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ABSTRACT: 

A rare autosomal recessive condition called 

cystinosis is characterized by a buildup of cystine 

in the lysosomes. The transfer of cystine from the 

lysosomes into the cytosol is disrupted by 

pathogenic mutations of the cystinosis gene 

(CTNS). Cysteine buildup inside lysosomes causes 

cellular malfunction later on. An incidence of 0.5–

1/100,000 live birth is associated with cystinosis. 

Nephropathic cystinosis is the most common 

disease subtype among the three types of 

cystinosis: neonatal cystinosis, juvenile cystinosis, 

and ocular cystinosis. The most prevalent way that 

disease manifests itself is renal impairment. The 

extrarenal symptoms of cystinosis include 

hypogonadism, hyperglycemia, and 

hypothyroidism." Currently, cysteamine, a 

substance that depletes cystines, is used to treat 

cystinosis. The main goal of this treatment is to 

reduce the disease's progression; it is not a cure. 

Ninety percent of individuals with cystinosis 

develop renal failure during their first 20 years of 

life. Patients who have reached this stage of the 

disease has no other choice except to have a kidney 

transplant. The pathophysiology and clinical signs 

of cystinosis are highlighted in this review, along 

with possible future therapeutic approaches. 

Keywords: CTNS, kidney failure, cystinosis, 

cysteine, and cysteamine. 

 

I. INTRODUCTION: 
A uncommon monogenic autosomal 

recessive disorder is cystinosis. With a global 

incidence of 0.5–1/100,000 live births, it is 

categorized as an uncommon disease.
[31]

 A 

lysosomal storage condition is cystinosis. Cysteine 

is transported from the lysosome to the cytoplasm 

by the cystinosin protein, which is encoded by 

pathogenic variations of the CTNS gene.
[93]

 Driven 

by an H+ electrochemical gradient, the cystinosin 

protein is a lysosomal seven-transmembrane 

protein that exports intra-lysosomal cystine.
[54]

 

Cysteine builds up in lysosomes as a result of the 

malfunctioning cystinosin protein.
[93]

This 

encourages the formation of harmful cystine 

crystals, which can cause harm to downstream 

organs .
[53]

The kidney, cornea, thyroid, liver, and 

spleen are the organs most affected. Cystinosis also 

affects muscles, peripheral nerves, and bones 

(cystinosis-associated metabolic bone disease). The 

most prevalent sign of cystinosis is kidney 

dysfunction 
[90].

 Nephropathic cystinosis, juvenile 

cystinosis, and ocular cystinosis are the three kinds 

of cystinosis. The French-Canadian region 

(Quebec) has the highest incidence of cystinosis 

(1:62,500), followed by North-West France 

(Brittany) (1:26,000) 
[9,

 
22].

 Although there is a 

dearth of information in these areas, it is also 

anticipated that nations with high levels of 

consanguinity will have greater rates of disease 
[50].

 

Additionally, developing nations lack diagnostic 

resources and knowledge on cystinosis, which 

could result in inaccurate. 

 

Genetics: 

The CTNS gene, which codes for the 

cystinosin transporter, is found on chromosome 

17p13 
[93].

 Since the CTNS gene was discovered in 

1998, more than 140 pathogenic variations have 

been identified 
[21].

 The first two exons in the 12 

exons that make up the CTNS gene are noncoding 

exons. There is a known linkage between genotype 

and phenotype, with just 15 and 4 variants linked to 

juvenile and ocular cystinosis, respectively, and the 

bulk of harmful variants causing nephropathic 

cystinosis 
[21].

 The pathogenic cystinosis mutations 

are widely distributed geographically. A significant 

57-kb deletion is the most prevalent cystinosis 

variant in North America and North Europe. The 

CTNS gene's first nine exons and a portion of its 

tenth exon are involved in this removal. This 

variation also involves the deletion of two upstream 

genes, CARKL and TRPV1 
[34].

 Severe 

nephropathic cystinosis is associated with this 

genetic variation 
[85].

 Between 50 and 70 percent of 

patients with nephropathic cystinosis in North 

America and North Europe have this 57-kb deletion 
[32].

 In other regions of the world, this form is less 



 

 

International Journal of Pharmaceutical Research and Applications 

Volume 10, Issue 01 Jan-Feb 2025, pp: 131-144 www.ijprajournal.com ISSN: 2456-4494 

 

 

 

 

DOI: 10.35629/4494-1001131144         Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal Page 132 

prevalent; in Italy and Turkey, it accounts for 17% 

and 0% of cystinosis patients, respectively 
[68,92].

 A 

CTNS non- sense mutation is present in 15% of 

patients with cystinosis 
[85].

 The most prevalent 

variant of nonsense is p.W138x (753G>A). Fifty 

percent of cystinosis patients in the French-

Canadian community have this variation, which 

causes the illness. It is said to have started in 

Ireland before spreading to the French-Canadian 

the mid-1800s region. While the French-Canadian 

population has the highest prevalence of this 

mutation, it is also present throughout Europe and 

North America at lower percentages 
[85].

 The 

W138X variation creates a nonfunctional allele by 

causing a premature termination codon (PTC) in 

exon 7 of the CTNS gene 
[69].

 The c.681G>A 

variant is prevalent in Egypt 
[86],

 the Middle East 

(Saudi Arabia, Turkey, and Iran) 
[2,

 
83,

 
92],

 and the 

black South African community 
[73].

 Other common 

variants are also prevalent in some people. 

 

 
FIG.1:CYSTINOSIS 

 

The molecular pathophysiology of cystitis; 

The lysosome's ability to transport 

cystines is compromised by a malfunctioning 

cystinosin transporter, which raises intralysosomal 

cystine levels 
[93].

 Cystinosis causes abnormalities 

in the process of protein breakdown, which is 

mostly dependent on lysosomes 
[75].

 Further 

supporting the idea that malfunctioning lysosomes 

play a role in the pathophysiology of cystinosis is 

the employment of small Rab GTPases, which 

enhance cellular function by upregulating 

lysosomal trafficking 
[52].

 Numerous downstream 

effects of elevated lysosomal cystine contribute to 

the molecular pathophysiology of cystinosis. 

Proximal tubular epithelial cell (PTEC) and 

podocyte dysfunction, inflammation, autophagy, 

oxidative stress, changed cellular energy 

metabolism, altered calcium signaling, and 

apoptosis are all factors in the multifactorial 

pathophysiology of cystinosis. 

 

 
FIG.2:CYSTINOSIS PATHOPHYSIOLOGY 

 

Podocyte dysfunction and PTEC: 

The of nephropathic cystinosis is 

characterized by PTEC and podocyte dysfunction. 

Cystinosin plays a key role in the function of 

PTECs and podocytes; in proximal renal tubular 

cells, ctns−/− zebrafsh exhibit increased lysosomes, 

slit membrane stenosis, and partial podocyte 

disappearance 
[27].

 Cystinosis can harm podocytes, 

which can lead to giant cell transformation [84] and 

mult- inucleation 
[14]

 because of a lack of 

cytokinesis. The actual damage to podocytes is 

probably complex, arising from multinucleation, 

altered cytoskeleton, and increased podocyte 

motility 
[46].

 It has been shown that AKT kinase is 

at the core of the intricate signaling cascade that 

controls podocyte adhesion and motility; inhibition 

of AKT kinase causes the hypermobile podocytes 

observed in cystinosis to return to normal 
[47,

 
49].

 

Patients with cystitis have higher levels of 

podocytes and PTECs in their urine than do 

controls.Nevertheless, there is no known 

relationship between podocyturia and proteinuria, 

age, or estimated glomerular filtration rate 
[47,

 
49].

 

Because of their hypermobile nature, compromised 

cell adhesion sites, and altered cytoskeleton, 

podocytes in cystinosis are more likely to be lost in 

the urine 
[47,

 
49].

 The aberrant transport of 

endolysosomal vesicles contributes to the loss of 

PTECs in the urine. This is explained by delayed 
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lysosomal cargo processing and a reduction in 

multiligand receptor surface expression 
[48].

 

 

Inflammation: 

 
FIG.3:CYSTINE BUILDUP 

 

Cystinosis etiology is significantly 

influenced by inflammation. Galectin 3, the 

NLRP2/3 infammasome, and the enzyme 

chitotriosidase are some of the main inflammatory 

mediators in this process. NLRP3 infam-masome 

activation can result from cystine buildup, and 

individuals with cystinosis had greater serum levels 

of I-1β 18 than controls. In response to cystine 

crystal stimulation, these cytokines are released in 

a dose-dependent manner 
[74].

 Reactive oxygen 

species are produced concurrently by the NLRP3 

inflammation, which also plays a role in the 

pathophysiology of cystitis 
[74].

 Furthermore, there 

is high expression of NLRP2.exerts a significant 

proinfamatory and probrotic role in cystinosis and 

in cystinotic PTECs 
[79].

 This inflammatory process 

also involves IL-6, which functions as an 

independent predictor of leukocyte cystine levels in 

addition to IL-1β and IL-18
.[99].

Additionally, it has 

been shown that anakinra-induced IL-1 suppression 

can lessen cachexia in individuals with cystinosis 
[17].

 In cystinosis, the chitotriosidase enzyme 

activity is elevated 
[28].

 An indicator of macrophage 

activity, chitotriosidase is an enzyme that breaks 

down chitin and is expressed by active 

macrophages 
[28].

 Gaucher disease and other 

lysosomal illnesses also exhibit increased 

chitotriosidase activity 
[41].

 Interestingly, a 

prospective multicenter investigation found a 

significant relationship between the quantity of 

chitotriosidase and problems outside the kidneys 
[99].

 Chitotriosidase activity may be used as a new 

biomarker for therapeutic monitoring and the 

degree of cystinosis 
[28,

 
99].

 It is known that galectin 

3 has a role in the inflammatory process that leads 

to the development of chronic kidney disease 
[64].

 

Compared to Ctns−/−mice, Ctns−/−Gal3−/−mice 

have better renal function and lower macrophage 

infiltration into the kidney due to the 

overexpression of Galec-tin 3 
[64].

 

 

Oxidative stress: 

It has been suggested that the pathogenesis 

of renal Fanconi syndrome in cystinosis is related 

to altered glutathione metabolism and elevated 

oxidative stress 
[16].

 Oxidative stress is facilitated by 

cystinotic cells' elevated superoxide dismutase 

synthesis and decreased glutathione concentration 
[19].

 Urinary shed PTECs from patients with 

cystinosis have also been shown to have increased 

levels of cellular oxidative stress 
[102].

 According to 

research, cystinotic cells are more susceptible to 

oxidative stress because of reduced glutathione 

synthesis and a weakened gamma glutamyl cycle, 

which may be brought on by changed ATP levels 

and mitochondrial dysfunction 
[67,

 
103,

 
104].

 

 

Alter cellular energy metabolism: 

Modified metabolism of cellular energy 

Reduced intracellular ATP levels are frequently 

reported in cystinosis, which is characterized by 

altered cellular energy homeostasis 
[61].

 According 

to studies, while Na+ K+ ATPase pump activity is 

maintained, the intracellular drop in ATP may be 

caused by a decrease in cellular glutathione 
[61]

 or a 

decrease in apical reabsorption of phosphate 
[89].

 

Additionally, a conditionally immortalized PTEC 

line has shown much lower levels of cAMP, 

mitochondrial potential, and complex I and IV 

activation 
[5].

 The activation of the cytosolic fuel 

sensor AMPK in rabbit renal proximal tubule cells 

with a cystinosin knockdown 
[88]

 further supports 

the existence of an energy imbalance. Signaling by 

calcium Since calcium signaling is disrupted in 

other lysosomal disorders such Gaucher and 

Niemann-Pick type C disease, it has been 

hypothesized that altered calcium signaling plays a 

part in cystinosis 
[56].

 Furthermore, in a cellular 

model of cystinosis, it has been shown that the 

calcium sensor UNC13D controls autophagy and 

endolysosomal trafficking 
[105,

 
106].

 ATP-induced 

calcium release appears to be slightly sensitized in 

cystinosis cells compared to control, despite the 

fact that no significant dysregulation of 

intracellular calcium dynamics has been observed 

in cystinosis 
[47,

 
49].

 Since lysosomal calcium release 

triggers downstream calcineurin activation and 
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TFEB dephosphorylation, which in turn trigger the 

expression of lysosomal and autophagy genes, a 

connection between lysosomal calcium signaling 

and autophagy has been demonstrated 
[70].

 

 

Clinical manifestation: 

Nephropathic cystinosis, juvenile 

cystinosis, and ocular cystinosis are the three 

clinical types of cystinosis. The degree of kidney 

involvement and the age at which the disease first 

manifests are what define them. With up to 95% of 

cases, nephropathic cystinosis, sometimes referred 

to as infantile nephropathic cystinosis, is the most 

prevalent type of cystinosis 
[30].

 The most severe 

kind of the illness typically results in renal Fanconi 

syndrome and kidney failure in the first ten years of 

life if treatment is not received 
[37].

 Five percent of 

cases are juvenile cystinosis, also referred to as 

late-onset cystinosis. Typically, juvenile cystinosis 

manifests between the ages of 
[10

 
and

 
12].

 Compared 

to nephropathic cystinosis, it is thought to be less 

severe, and people are more likely to experience a 

lesser form of renal Fanconi syndrome within the 

first ten years of life without treatment 
[37].

 Five 

percent of occurrences of cystinosis are in children, 

commonly referred to as late-onset cystinosis. The 

typical age range for juvenile cystinosis 

development is 
[10

 
to

 
12.]

 In addition to having 

significant glomerular involvement and proteinuria, 

people with this condition are likely to have a 

milder type of renal Fan-coni syndrome, making it 

less severe than nephropathic cystinosis 
[30].

 The 

type of cystinosis that is not nephropathic is called 

ocular cystinosis. It is seldom identified before 

maturity and typically manifests as cystine 

buildups within the cornea 
[37,

 
90].

 At the age of one 

year, children with nephropathic cystinosis start 

exhibiting signs of renal Fanconi syndrome. This 

includes rickets, growth retardation, constipation, 

failure to thrive, polyuria, polydipsia, dehydration, 

and vomiting. Acidosis, hypokalemia, proteinuria, 

hypophosphatemia, and aminoaciduria can all be 

found in laboratory results 
[90].

 Physical changes in 

the kidney's structure do not show up until the 

second year of life, despite the fact that these 

symptoms start to show around one year. This 

suggests a potential window of opportunity to offer 

disease- curing treatment in the future before the 

kidney's proximal tubules undergo permanent 

physical changes 
[13,

 
16].

Renal transplantation is the 

best course of action for people who reach stage 5 

renal failure. At the age of one year, children with 

nephropathic cystinosis start exhibiting signs of 

renal Fanconi syndrome. This includes rickets, 

growth retardation, constipation, failure to thrive, 

polyuria, polydipsia, dehydration, and vomiting. 

Acidosis, hypokalemia, proteinuria, 

hypophosphatemia, and aminoaciduria can all be 

found in laboratory results 
[90].

 Physical changes in 

the kidney's structure do not show up until the 

second year of life, despite the fact that these 

symptoms start to show around one year. This 

suggests a potential window of opportunity to offer 

disease-curing treatment in the future before the 

kidney's proximal tubules undergo permanent 

physical changes 
[13,

 
16].

 renal transplantation is the 

best course of action for people who reach stage 5 

renal failure. Early cysteamine treatment increases 

the linear growth of cystinosis patients, according 

to a 20-year longitudinal research 
[40].

 Cysteine 

crystal deposits in the cornea are a symptom of 

ocular cystinosis. These cystine crystals, which 

appear in the cornea after 16 months of age, are 

indicative of cystinosis 
[36].

 Later in life, 

progressive retinopathy and band keratopathy may 

develop if therapy is not received 
[30],

 with 

retinopathy resulting in blindness in 10–15% of 

cases 
[36].

 

 

Diagnosis: 

There are three primary ways to diagnose 

cystinosis. This includes the detection of corneal 

cystine crystals, genetic analysis, and the 

assessment of leukocyte cystine levels 
[91].

 The gold 

standard is the measurement of leukocyte cystine 

levels. High-performance liquid chromatography or 

liquid chromatography-tandem mass spectrometry 

are used to perform it 
[37].

 Cystinosis should always 

be regarded as a differential diagnosis because it is 

the most frequent cause of renal Fanconi syndrome 

in infants 
[30].

 

 

Treatment: 

The few available treatments for 

cystinosis are not curative. To minimize renal 

damage and the disease's progression, early 

diagnosis and treatment are essential 
[34].

 Treatment 

for cystitis can be divided into three categories: 

symptom relief, lifestyle changes, and cystine-

targeted therapy. Avoiding extended sun and heat 

exposure can reduce the risk of heatstroke due to 

decreased sweating 
[35].

 Additionally, patients who 

suffer from significant polyuria and polydipsia 

should have unrestricted access to water and 

bathrooms 
[103,104].

 The primary goal of 

symptomatic therapy is to manage the adverse 

effects of renal impairment. This include 

preventing keeping proper fluid and electrolyte 
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balance, and eating a healthy, balanced diet. The 

three electrolytes that are most crucial are sodium, 

potassium, and bicarbonate; these are routinely 

checked 
[103,

 
104].

 Unrestricted consumption of salt 

and water is crucial because poor renal function 

causes a significant loss of fluids and electrolytes 
[37].

 In order to avoid rickets, vitamin D 

supplements are frequently administered to 

patients. In an experimental investigation using 

Ctns−/−mice, 25(OH)D3 showed an advantage 

over 1,25(OH)2D3 by avoiding adipose tissue 

browning and muscle atrophy 
[108].

 Additionally, an 

experimental investigation has shown that IL 1 has 

a function in cystinosis metabolic bone disease, 

which may help explain the impact of 

immunosuppressive medication. Pediatric patients 

frequently experience severe failure to thrive 
[26].

 

For individuals who are unable to maintain a 

nutritious diet, nasogastric tubes and gastrostomy 

tube feeding are keeping proper fluid and 

electrolyte balance, and eating a healthy, balanced 

diet. The three electrolytes that are most crucial are 

sodium, potassium, and bicarbonate; these are 

routinely checked 
[103,104].

 Unrestricted consumption 

of salt and water is crucial because poor renal 

function causes a significant loss of fluids and 

electrolytes
.[37].

 In order to avoid rickets, vitamin D 

supplements are frequently administered to 

patients. In an experimental investigation using 

Ctns−/−mice, 25(OH)D3 showed an advantage 

over 1,25(OH)2D3 by avoiding adipose tissue 

browning and muscle atrophy 
[108].

 Additionally, an 

experimental investigation has shown that IL 1 has 

a function in cystinosis metabolic bone disease, 

which may help explain the impact of 

immunosuppressive medication Pediatric patients 

frequently experience severe failure to thrive 
[26].

 

For individuals who are unable to maintain a 

nutritious diet, nasogastric tubes and gastrostomy 

tube feeding are advised 
[31].

 Proton-pump 

inhibitors may also be helpful for people who 

experience frequent vomiting and reflux 
[25]

 

One clinical consequence of cystitis is 

growth retardation. While growth hormone 

treatment can also be started to improve final 

height 
[8,

 
40],

 cytosteamine medication alone will 

improve statural growth 
[96].

 Diabetes, 

hypothyroidism, and hypogonadism are fewer 

common consequences of cystinosis that are treated 

with insulin, levothyroxine, and testosterone, 

respectively 
[103,104].

 Before the age of 20, 90% of 

people with cystinosis develop renal failure 
[20].

 

Dialysis and kidney transplantation are the only 

remaining therapy alternatives at this time 
[50].

 The 

initial illness does not affect the donor kidney after 

transplantation. Despite having a good prognosis 

for individuals with cystinosis, kidney transplants 

are not risk-free 
[57].

 Transplant recipients face a 

number of difficulties, including significant 

rehabilitation, lifelong immunotherapy, and 

surgical complications. Ocular cysteamine levels 

are unaffected by oral administration of cysteamine 
[94].

 The treatment for ocular cystinosis involves 

applying topical 0.5% cysteamine eye drops 10–12 

times daily. Photophobia and ocular discomfort can 

be significantly reduced by topical cysteamine, 

which enhances quality of life 
[95].

 Sustained release 

cysteamine eyedrops have been the subject of 

numerous research with the goal of enhancing 

medication stability, enabling a once-daily dosage 

schedule, and lowering patient disease burden 
[51,

 
78].

 Furthermore, a drugless treatment for ocular 

cystinosis using gold nanoparticle contact lenses 

has been developed and evaluated in vitro; the gold 

nanoparticles remove cysteine from the 

surrounding tissue 
[63] 

 

Cysteamine: 

The cornerstone of treatment for 

individuals with cystinosis is cysteamine. One 

medication that depletes cystines is cysteamine. 

Because cysteamine causes a disulphide exchange 

reaction that produces both cysteine and cystine- 

cysteamine mixed disulphide, it reduces intra-

lysosomal cystine levels. A "system c" transporter 

allows cystine to exit the lysosome in the form of 

cysteine-cysteamine-mixed disulphide, while the 

cysteine carrier allows the remaining cystine to exit 
[103,

 
104].

 Cysteamine enhances overall prognosis and 

postpones the onset of extrarenal problems, the 

necessity for kidney transplantation, and the 

progression of kidney failure 
[34].

 Cysteine therapy 

should be continued in patients undergoing kidney 

transplantation in order to prevent harm to 

extrarenal organs 
[103,104].

 Proton pump inhibitors 

help lessen the gastrointestinal distress and 

disturbance that are the primary side effects of 

cysteamine 
[25].

 At first, the patient's quality of life 

was continuously disrupted by the four times a day 

that cysteamine was administered. Because of its 

brief half-life, the quick release formulation of 

cysteamine limits the user to taking it once every 

six hours, including at night 
[103,104].

 There have 

been recent attempts to extend the half-life of 

cysteamine. In 2013 and 2014, respectively, the 

USA and Europe authorized the use of a delayed 

release version of cysteam-ine 
[4].

 This permit 

dosing twice a day, at 12-hour intervals 
[60].

 By 
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avoiding the stomach and preventing severe 

gastrointestinal effects, delayed release cysteamine 

lessens the necessity for concurrent gastro-

protection 
[31].

 Compared to immediate release 

cysteamine, it has been demonstrated to enhance 

renal function, leukocyte cystine levels, and quality 

of life 
[58,

 
96].

 The possibility of once-daily dosage 

has been raised by attempts to find cysteamine pro-

drugs such esterifed gamma-glutamyl-cysteamine, 

which may maintain cysteamine levels above the 

threshold of efficacy for at least 24 hours 
[33].

 To 

lessen the burden of sickness on patients, more 

study is required to examine prodrugs and 

cysteamine analogues. The management of this 

illness depends on early diagnosis and therapy 
[34].

 

Veys et al.'s multicenter sibling cohort study found 

that presymptomatic cysteamine treatment was 

more beneficial than treatment started at the onset 

of symptoms 
[98].

 Furthermore, when diagnosed 

before the age of 18 months, kidney transplantation 

is necessary at a significantly later age 
[72].

 Despite 

recent improvements in cystinosis therapy, there is 

still a significant gap: 7% of patients in 

impoverished nations die at age 5, compared to 0% 

in industrialized nations 
[7].

 Notably, there are 

significant differences in the availability of 

cysteamine around the globe; in developing and 

developed economies, 74% and 7% of patients, 

respectively, have access to delayed release 

cysteamine. Furthermore, third-world countries 

have fewer diagnostic capacities than developed 

ones; in developing economies, genetic testing and 

intra-lysosomal cystine level measurements are 

available in 63% and 30% of cases, respectively, 

whereas in developed economies, they are 100% 

and 94% available 
[77].

 As could be expected, the 

mean age of illness and mortality is lower in 

emerging nations 
[7].

 Notably, there are significant 

differences in the availability of cysteamine around 

the globe; in developing and developed economies, 

74% and 7% of patients, respectively, have access 

to delayed release cysteamine. Furthermore, third-

world countries have fewer diagnostic capacities 

than developed ones; in developing economies, 

genetic testing and ntra-lysosomal cystine level 

measurements are available in 63% and 30% of 

cases, respectively, whereas in developed 

economies, they are 100% and 94% available 
[77].

 

As could be expected, the mean age of illness and 

mortality is lower in emerging nations 
[7] 

 

Options for future therapy: 

Many studies have been conducted in 

recent years to develop a more effective treatment 

for cystinosis. Since bone marrow and 

hematopoietic stem/progenitor cell (HSPC) 

transplants have been successful in Ctns-/- mice, 

there has been interest in them. In Ctns−/−mice, 

transplanting syngeneic wild-type murine 

hematopoietic stem and progenitor cells led to up 

to 97% intra- lysosomal cystine clearance, which 

also decreased illness systemic symptoms 
[87].

 

Following this, a 16-year-old male patient with 

cystinosis underwent an allogenic HSPC transplant. 

Unfortunately, graft-versus-host disease claimed 

the patient's life 35 months after the transplant 
[29].

 

Additionally, studies have looked into downstream 

molecular targets that could help with cystinosis. 

These targets consist of LAMP2A and mTOR. 

Preclinical studies have shown that inhibition of 

mTOR/mTORC1 can reverse the downstream 

effects of intra-lysosomal cystine buildup on 

lysosomal function and cell differentiation, 

indicating a significant potential therapeutic target 
[65].

 When combined with cysteamine treatment 
[45]

 

and dietary protein restriction 
[6],

 mTOR inhibition 

represents more choices to alleviate cellular 

dysfunction brought on by cystinosis. A potential 

point of intervention to ameliorate the condition is 

the disruption of chaperone-mediated autophagy 

(CMA), which is also present in cystinosis. 

Increased LAMP2A localization is facilitated by 

CMA activation in vitro, which raises murine Ctns-

/-cell survival 
[107].

 In a human proximal tubule cell 

line created using CRISPR-Cas9 CTNS KO, it has 

similarly, been demonstrated that CMA 

overexpression causes proximal tubule cell 

dysfunction 
[105,

 
106]

 Members of the flavonoid 

family, such as genistein and luteolin, have 

potential medicinal uses. Through activation of 

transcription factor EB (TFEB), in vitro studies 

showed that genistein, an isoflavone abundant in 

soy, could recover the cystinotic cellular phenotype 

in a mechanism independent of cystinosin 
[76].

 In 

animal models of nephropathic cystinosis, 

additional research demonstrated that genistein 

could ameliorate kidney disease 
[24].

 Additionally, 

genistein has a bone-protective effect 
[24].

 

Furthermore, it has been shown that luteolin can 

target illness components that are resistant to 

cysteamine therapy 
[23].

 When combined, these 

findings suggest that a treatment using 

genistein/luteolin and cysteamine may target 

distinct pathways in the pathophysiology of 

cystinosis for enhanced therapeutic benefit. ACE-

tRNA, as opposed to gene therapy, minimizes the 

possible toxicity linked to overexpression or off-

target expression of cDNA by enabling endogenous 
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transcription. Furthermore, it eliminates the issues 

related to delivering full-length cDNA, which 

might exceed AAVs' packaging threshold 
[100].

 

ACE-tRNAs present a potential novel therapeutic 

strategy to target disorders like Duchenne muscular 

dystrophy, cystinosis, and cystic fibrosis that are 

mediated by nonsense variants The unique 

difficulties that RNA- and molecular-based therapy 

encounters in cystinosis should not be overlooked. 

Targeting the kidney presents additional challenges 

for RNA-based therapeutics because of the intricate 

renal architecture and the wide range of cell types 

found there 
[10].

 Peptide ligands, antibody-like 

molecules, and aptamers are RNA delivery systems 

that may be useful in cystinosis because they 

enable treatments to target the kidney directly 
[10]. 

 

Conclusion: 

The intra lysosomal buildup of cysteine is 

the cause of cystinosis, a rare autosomal recessive 

genetic disorder. There aren't many curative 

therapeutic options for it. The goals of treatment 

are to reduce symptoms, postpone renal failure, and 

limit the progression of the illness. The majority of 

patients undergoing cysteamine treatment now 

reach adulthood, indicating significant progress in 

the treatment of cystinosis. Improving morbidity 

and mortality rates requires early intervention and 

ongoing cysteamine therapy for the rest of one's 

life 
[44].

 Numerous intriguing studies are being 

conducted in this area, offering patients with 

cystinosis a number of novel and promising 

treatment possibilities. 
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