Volume 10, Issue 5 Sept - Oct 2025, pp: 668-675 www.ijprajournal.com ISSN: 2456-4494

A Review on Cleome Gynandra

V. Kalaivani¹*, A.S.K.Sankar², V. Barath³, K. Baskaran⁴, S.Karthikraja⁵, E. Priyadharshini⁶, A.Vijay⁷

¹*Assistant Professor, Department of Pharmaceutical Chemistry, Smt.Gandhimathi College of Pharmacy, Tiruvannamalai.

² Professor Cum Principal Smt. Gandhimathi College of Pharmacy, Tiruvannamalai. ^{3,4,5,6,7}Students, Smt. Gandhimathi College of Pharmacy, Tiruvannamali.

Date of Submission: 20-09-2025

Date of Acceptance: 30-09-2025

ABSTRACT: Cleome gynandra commonly known as spider flower or "Nayivelai," is an important leafy vegetable tropical with significant ethnomedicinal value. The plant is rich in flavonoids, alkaloids, phenolics, tannins, saponins, glucosinolates, vitamins, and essential minerals. Traditionally, it has been used for the treatment of gastrointestinal fever, disorders, respiratory problems. wounds, and skin infections. Pharmacological investigations have demonstrated anti-inflammatory, antioxidant, antimicrobial, analgesic, antipyretic, antidiabetic, and woundhealing properties. Owing to its dual role as a food and medicine, Cleome gynandra holds promise as a nutraceutical plant and a potential source for novel therapeutic agents.

KEYWORDS: Cleome gynandra, Phytochemicals, Traditional uses, Pharmacological activities

I. INTRODUCTION:

Recent estimates indicate approximately one-third of the medications currently used in clinical practice are derived from natural products⁽¹⁾. This includes ingredients either directly isolated from natural sources, synthesized, or semi-synthesized by structural modification of their natural composites⁽²⁾. Herbal medicine plays a crucial role in sustaining both the health and prosperity of humanity, with a significant portion of the global population relying on herbal remedies⁽³⁾. The World Health Organization (WHO) reports that around 21,000 plants have been utilized for medicinal purposes, and over 50,000 plant species are employed in traditional medicine worldwide⁽⁴⁾. Cleome gynandra L. (Capparidaceae) is commonly known as 'Nalvelai' and 'Taivelai' in Tamil⁽⁵⁾. It is widely used as a medicinal plant and is distributed in different parts of India⁽⁶⁾. The plant grows abundantly as a weed in paddy fields, on roadsides, and in open grasslands, though it is not systematically cultivated (7). This review highlights the botany, pharmacology, biochemistry, folkloric,

and traditional medicinal applications of C. gynandra⁽⁸⁾. Traditionally, it has been utilized in folk medicine for healing purposes, particularly in wound management⁽⁹⁾. Scientific reports confirm that extracts of C. gynandra leaves possess anti-inflammatory, antimicrobial, and antioxidant activities, which contribute to effective wound repair⁽¹⁰⁾. These properties validate its traditional use in treating cuts, burns, and skin infections⁽¹¹⁾.

TOXONOMICAL PROFILE: (12)

Kingdom - Plantae

Subkingdom- Tracheobionta (Vascular plants).

Superdivision - Spermatophyta (Seed plants).

Division/Phylum–Magnoliophyta (Flowering plants / Angiosperms).

Class - Magnoliopsida (Dicotyledons).

Subclass – Dilleniidae.

Order - Brassicales.

Family - Cleomaceae (sometimes included in Capparaceae in older systems).

Genus- Cleome.

Species - Cleome gynandra L.

Synonyms- Gynandropsis gynandra, Cleome Africana.

Common Names -Spider plant.

ORIGIN AND DISTRIBUTION:

In India, C. gynandra is widely distributed in tropical and subtropical zones, especially in states such as Tamil Nadu, Andhra Pradesh, Maharashtra, Uttar Pradesh, and West Bengal⁽¹³⁾. It commonly grows in wastelands, roadsides, and cultivated fields during the rainy season⁽¹⁴⁾. The plant is well adapted to warm climates and sandy loam soils, and thrives under monsoon conditions⁽¹⁵⁾.

MORPHOLOGICAL PROFILE: (15-21)

Cleome gynandra is a erect and annual herb (25-60cm tall). Its sticky, ridged stem bears glandular hairs that secrete secondary metabolites

LIPRA Journal

International Journal of Pharmaceutical Research and Applications

Volume 10, Issue 5 Sept - Oct 2025, pp: 668-675 www.ijprajournal.com ISSN: 2456-4494

like alkaloids and flavonoids. These traits aid species identification and link morphology to the plant's medicinal properties and pharmacological potential.

> LEAVES:

Cleome gynandra leaves are widely used in food and traditional medicine. They contain flavonoids, alkaloids, and glucosinolates with strong therapeutic effects. Used to treat fevers, wounds, infections, and digestive disorders. The obtained Leaf extracts of Cleome gynandra show potent antioxidant activity.

> STEM:

The stem of C. gynandra contains proanthocyanidins with antioxidant and anti-cancer potential. Stem extracts show slightly less antimicrobial and antioxidant activity. Acetone extract inhibits ABTS and nitric oxide radicals effectively. These properties suggest its role in preventing inflammatory disorders.

> ROOT:

Roots of C. gynandra are used to induce labour and relieve abdominal pain. They contain alkaloids and phenolics with anthelmintic and analgesic effects. Traditionally used for intestinal worms and postpartum care.

> SEED:

The seeds of Cleome gynandra contains very high and rich essential oils and it have asecondarymetabolites, including glucosinolates. Traditionally, seeds are used for digestive disorders and have been incorporated in treatments for intestinal inflammation. Phytochemical studies on seeds remain limited, but preliminary data suggest their potential for modulating gut microbiota and acting as natural preservatives due to their antimicrobial action.

> FLOWER:

The seeds of C. gynandra are highly rich in oils and secondary metabolites, including glucosinolates. Traditionally, seeds are highly used for digestive disorders and treatments for intestinal inflammation. Phytochemical studies on seeds remain limited, but preliminary data suggest their potential for modulating gut microbiota and acting as natural preservatives due to their antimicrobial action.

> FRUIT:

The fruiting capsule of C. gynandra, measuring 30-150 mm in length and 2.5-5mm in width, it's a significant source of alkaloids, terpenoids, and fatty acid derivatives, particularly due to its linear, glandular-hairy surface and persistent style.

CHEMICAL CONSTITUENTS:

LEAVES:

The leaves of Cleome gynandra contain flavonoids such as quercetin, kaempferol, luteolin, and naringenin, along with glycosides, tannins, phenolic compounds, carotenoids (β -carotene), saponins, and vitamin C. They also provide proteins, amino acids, and minerals like calcium, iron, and zinc⁽¹⁵⁾.

> STEM:

The stem is reported to possess flavonoids including rutin and hesperidin, together with tannins, trace alkaloids, sterols, and triterpenes such as lupeol and β -amyrin. These compounds are largely responsible for the plant's antioxidant and anti-inflammatory properties $^{(22,23)}$.

ROOT:

The roots yield distinctive flavonoid glycosides such as naringenin-4'-O-galactoside and dihydrokaempferol-4'-O-galactoside, as well as triterpenoids like lupeol and β -amyrin. These constituents explain the root's traditional role in wound healing, antidiabetic, and anti-inflammatory applications (15,24).

BARK:

The bark (outer stem tissues), though not woody, contains triterpenoids, phytosterols, phenolic compounds, and saponins. These enhance its antimicrobial, protective, and supportive medicinal roles^(22,25).

ACTIVITIES:

ANTI-INFLAMMATORY ACTIVITY:

Anti-inflammatory activity refers to the ability of a compound, extract, or drug to suppress or regulate this inflammatory process. Conventionally, synthetic drugs such as corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs) are used for management; however, their prolonged usage leads to adverse effects such as gastrointestinal irritation, renal toxicity, and cardiovascular risks⁽²⁶⁾.

Due to these limitations, research interest has shifted toward plant-based natural compounds

Volume 10, Issue 5 Sept - Oct 2025, pp: 668-675 www.ijprajournal.com ISSN: 2456-4494

which exhibit anti-inflammatory activity with minimal side effects. Medicinal plants rich in flavonoids, alkaloids, tannins, terpenoids, and phenolic compounds are reported to suppress proinflammatory mediators like cyclooxygenase (COX), lipoxygenase (LOX), tumor necrosis factor- α (TNF- α), interleukins (IL-1 β , IL-6), nitric oxide (NO), and nuclear factor kappa B (NF- κ B), thereby reducing inflammation⁽²⁷⁾.

ANTI -OXIDATANT ACTIVITY:

Oxidative stress arises when there is an imbalance between the production of reactive oxygen species (ROS) such as superoxide anions, hydroxyl radicals, and hydrogen peroxide, and the body's antioxidant defense system. Excessive ROS damages cellular proteins, lipids, and DNA, leading to the progression of chronic diseases including diabetes, cardiovascular disorders, neurodegenerative diseases, cancer, and aging-related complications⁽²⁸⁾.

Antioxidant activity refers to the ability of compounds to neutralize or scavenge free radicals, thereby preventing oxidative stress—induced cellular injury. Synthetic antioxidants like butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) are widely used but are associated with potential health risks and toxicity on prolonged use⁽²⁹⁾.

ANALGESIC ACTIVITY:

Analgesic activity refers to the ability of a compound, extract, or drug to reduce or block pain perception through central (acting on the brain and spinal cord) or peripheral (acting at the site of injury/inflammation) mechanisms. While effective, they are associated with adverse effects such as gastrointestinal bleeding, renal dysfunction, respiratory depression, and risk of dependence (30).

Due to these limitations, medicinal plants have been widely investigated as natural analgesics. Phytoconstituents such as flavonoids, alkaloids, tannins, terpenoids, and saponins modulate pain pathways by inhibiting cyclooxygenase (COX), lipoxygenase (LOX), prostaglandin synthesis, and interacting with opioid receptors, thereby reducing pain sensations⁽³¹⁾.

ANTI-CANCER ACTIVITY:

Anticancer activity refers to the ability of natural or synthetic compounds to inhibit tumor initiation, progression, or metastasis through mechanisms such as induction of apoptosis, inhibition of cell proliferation, suppression of angiogenesis, and modulation of signaling

pathways. Conventional therapies such as chemotherapy, radiotherapy, and targeted therapy, though effective, are often associated with severe adverse effects, multidrug resistance, and toxicity⁽³²⁾.

Hence, increasing attention is given to medicinal plants as sources of safer and more effective anticancer agents. Phytoconstituents including flavonoids, alkaloids, terpenoids, tannins, and phenolic compounds exert cytotoxic effects by targeting key molecular pathways such as p53 activation, caspase cascade initiation, inhibition of NF-κB, and modulation of reactive oxygen species⁽³³⁾.

ANTI-FUNGAL ACTIVITY:

Phytochemicals derived from medicinal plants offer a promising alternative as natural antifungal agents. Secondary metabolites such as flavonoids, alkaloids, tannins, terpenoids, saponins, and phenolic compounds act against fungal pathogens through multiple mechanisms, including disruption of cell membrane integrity, inhibition of ergosterol synthesis, prevention of spore germination, and induction of oxidative stress in fungal cells⁽³⁴⁾.

The antifungal potential of medicinal plants rich in bioactive phytochemicals. These studies demonstrate that phytochemical-rich extracts from plant Cleome gynandracan inhibit the growth of pathogenic fungi effectively and safely, supporting their traditional therapeutic applications⁽³⁵⁾.

ANTI-BACTERIAL ACTIVITY:

Phytochemicals present in medicinal plants provide a natural source of antibacterial agents. Secondary metabolites such as alkaloids, flavonoids, tannins, terpenoids, saponins, and phenolic compounds inhibit bacterial growth by disrupting cell wall and membrane integrity, interfering with nucleic acid replication, inhibiting essential bacterial enzymes, and suppressing biofilm formation.

Due to these limitations, research has increasingly focused on medicinal plants as potential antibacterial agents. Phytochemicals such as alkaloids, flavonoids, tannins, terpenoids, saponins, and phenolic compounds inhibit bacterial cell wall synthesis, disrupt membrane integrity, interfere with nucleic acid replication, and inhibit essential bacterial enzymes⁽³⁶⁾.

Volume 10, Issue 5 Sept - Oct 2025, pp: 668-675 www.ijprajournal.com ISSN: 2456-4494

ANTI-HYPERGLYCEMIC ACTIVITY:

Anti-hyperglycemic activity refers to the ability of compounds, extracts, or drugs to lower blood glucose levels by enhancing insulin secretion, improving insulin sensitivity, inhibiting carbohydrate-digesting enzymes, or modulating glucose uptake and metabolism⁽³⁷⁾.

Medicinal plants have attracted attention as safer alternatives for diabetes management. Phytochemicals such as flavonoids, alkaloids, tannins, saponins, and phenolic compounds exhibit anti-hyperglycemic effects by stimulating pancreatic β -cells, inhibiting α -amylase and α -glucosidase enzymes, enhancing glucose uptake in peripheral tissues, and reducing oxidative stress associated with hyperglycemia⁽³⁸⁾.

ANTI-DIARRHEAL ACTIVITY:

Anti-diarrheal activity refers to the ability of compounds or plant extracts to reduce the frequency and severity of diarrhea by regulating intestinal motility, inhibiting secretion, and modulating gut microbiota⁽³⁹⁾.

Medicinal plants provide safer alternative for managing diarrhea. Phytoconstituents such as flavonoids, tannins, saponins, alkaloids, and phenolic compounds exert anti-diarrheal effects by inhibiting intestinal hypersecretion, reducing inflammation, improving mucosal integrity, and suppressing gastrointestinal pathogens⁽⁴⁰⁾.

ANTI-PYRETIC ACTIVITY:

Antipyretic activity refers to the ability of a compound, extract, or drug to reduce elevated body temperature by modulating the hypothalamic thermoregulatory center and inhibiting the production of pyrogenic mediators such as prostaglandins⁽⁴¹⁾.

Medicinal plants have been widely explored as natural antipyretic agents with fewer side effects. Phytochemicals such as flavonoids, alkaloids, tannins, terpenoids, and saponins exert antipyretic effects by suppressing the synthesis of prostaglandins, reducing cytokine production, and modulating inflammatory responses⁽⁴²⁾.

WOUND HEALING ACTIVITY:

Wound healing activity refers to the ability of compounds or plant extracts to accelerate tissue repair, reduce infection, enhance collagen synthesis, and promote epithelialization⁽⁴³⁾.

Medicinal plants offer an effective alternative for wound management due to their bioactive compounds such as flavonoids, tannins, saponins, alkaloids, and phenolics. These phytochemicals stimulate fibroblast proliferation, angiogenesis, collagen deposition, and antimicrobial defense, thereby promoting faster and more efficient wound repair⁽⁴⁴⁾.

REVIEW ON CLEOME GYNANDRA BASED ON THE ACTIVITY: (45-55)

PLANT PART	EXTRACT TYPE	PHYTOCHEMICAL	REPORTED
		CONSTITUENTS	ACTIVITIES/USES
LEAVES	Aqueous extract	Phenolic acids,	Anti-diarrheal,
		Tannins,	Antipyretic,
		Saponins,	Wound healing,
		Vitamin C.	Traditional tonic.
LEAVES	Ethanolic extract	Flavonoids (quercetin,	Anti-inflammatory,
		rutin, kaempferol),	Analgesic,
		Alkaloids,	Antimicrobial,
		Terpenoids	Antioxidant.
LEAVES	Methanolic extract	Flavonoids,	Antidiabetic,
		Triterpenoids,	Anticancer potential,
		Glycosides,	Hepatoprotective,
		Carotenoids,	Antioxidant.
		Tocopherols.	

Volume 10, Issue 5 Sept - Oct 2025, pp: 668-675 www.ijprajournal.com ISSN: 2456-4494

SEEDS	Oil extract	Fixed oils (linoleic, oleic,	Skin care,
		palmitic acids),	Antimicrobial,
		Sterols,	Nutritional (rich in
		Proteins.	essential fatty acids and
			proteins)
SEEDS	Methanolic extract	Phenolics,	Antimicrobial.
		Amino acids,	Antioxidant.
		Sterols.	
SEEDS	Petroleum ether extract	Fatty acids,	Antimicrobial and
		Sterols.	Nutritive role.
ROOTS	Decoction (aqueous)	Alkaloids,	Fever reduction,
		Glycosides,	Stomach disorders,
		Saponins,	Cough,
		Phenolics.	Asthma.
ROOTS	Ethanolic extract	Alkaloids,	Anthelmintic,
		Tannins,	Anti-inflammatory.
		Saponins.	-
FLOWERS/AERIAL	Ethanolic extract	Flavonoids,	Antifungal (effective
PARTS		Terpenoids,	against dermatophytes),
		Phenolics.	Antimicrobial.
FLOWERS/AERIAL	Methanolic extract	Flavonoids,	Wound healing,
PARTS		Phenolics	Antioxidant.
STEM	A guanta autmont	Tannins,	Digestive aid,
SIEM	Aqueous extract	Alkaloids.	Supportive therapy
Comp	Methanolic extract		11 17
STEM	Methanolic extract	Flavonoids,	Antioxidant, Antimicrobial/
		Tannins, Phenolics.	Anumicrobiai/
WHOLEPLANT	Aqueous/Alcoholic	Mixed phytochemicals-	General health tonic,
	extract	Flavonoids, Terpenoids,	Antioxidant,
	CAHACI	Alkaloids,	Antimicrobial,
		Tannins.	Anti-tumor.
		Phenolics, Vitamins.	Antidiabetic.
		i henones, vitalinis.	Annualauctic.

II. CONCLUSION:

Cleome gynandra is a versatile medicinal and nutritional plant widely distributed across tropical and subtropical regions of India. Its stems, roots, leaves, seeds, flowers, and fruits are rich in bioactive compounds such as flavonoids, alkaloids, glucosinolates, proanthocyanidins, terpenoids, and essential oils. These phytochemicals confer potent antioxidant, antimicrobial, anti-inflammatory, analgesic, and anticancer activities. Traditional uses, including treatment of fevers, wounds, disorders, intestinal worms, postpartum care, are supported by pharmacological studies, particularly the strong antioxidant and antimicrobial potential of its leaves, stems, and seeds.

Despite promising preliminary studies, several parts of the plant, especially seeds and

flowers, remain underexplored. Future research could focus on detailed phytochemical profiling, mechanistic studies, and clinical validation to unlock the full therapeutic potential of C. gynandra. Further investigations may also explore its wound healing and antipyretic activities, which could expand its applications in modern herbal medicine.

REFERENCE:

- [1]. Sharma A, Shanker C, Tyagi LK, Singh M, Rao CV. Herbal medicine for market potential in India: An overview. Acad J Plant Sci. 2008;1(2):26–36.
- [2]. Mukherjee PK, Wahile A. Integrated approaches towards drug development from Ayurveda and other Indian system of medicines. J Ethnopharmacol. 2006;103(1):25–35.

Volume 10, Issue 5 Sept - Oct 2025, pp: 668-675 www.ijprajournal.com ISSN: 2456-4494

- [3]. Pandey MM, Rastogi S, Rawat AKS. Indian traditional Ayurvedic system of medicine and nutritional supplementation. Evid Based Complement Alternat Med. 2013;2013:1–12.
- [4]. Singh R. Medicinal plants: A review. J Plant Sci Res. 2015;31(2):23–29.
- [5]. Saha D, Paul S. Review on phytochemical and pharmacological aspects of Cleome gynandra. Int J Pharma Bio Sci. 2012;3(3):59–65.
- [6]. Kannan R, Suresh Kumar R, Rajesh P. Ethnopharmacological review of Cleome gynandra L. J Pharm Res. 2011;4(12):4506–4508.
- [7]. Kumar GP, Debjit B. Traditional and medicinal uses of Cleome gynandra Linn: An overview. J Chem Pharm Res. 2010;2(2):400–407.
- [8]. Sreeja S, Sreekumar S. Pharmacognostical and pharmacological review on Cleome gynandra. Int J Pharm Sci Rev Res. 2013;22(1):182–185.
- [9]. Rajendran R, Krishnakumar E. Ethnomedicinal review on wound healing herbs of Tamil Nadu. Anc Sci Life. 2010;29(4):1–6.
- [10]. Patel DK, Kumar R, Laloo D, Hemalatha S. Natural medicines from plant source used for therapy of diabetes mellitus: An overview of its pharmacological aspects. Asian Pac J Trop Biomed. 2012;2(4):320–330.
- [11]. Sharma V, Paliwal R. A review on pharmacological potential of Cleome gynandra. Pharmacogn Rev. 2011;5(10):196–203.
- [12]. Shanmugam S, Rajendran K, Suresh B. (2013). Medicinally Important Plant Cleome gynandra: A Phytochemical and Pharmacological Explanation. Research Journal of Pharmacy and Technology, 6(8): 859–863.
- [13]. Bhattacharya S, Singh S, Kumar A. A comprehensive study on occurrence records of African neglected and underutilized weed species Cleome gynandra L. (cat's whiskers): validating the ecogeographical range expansion in West Bengal, India. NeBIO. 2019;10(1):1-
- [14]. Debnath A, Paul C, Debnath B. Eight new additions of plant species to the flora of foot Himalayan state Tripura, North East

- India: distributional range extension, geographic map
- [15]. and their less known ethno medicines. NeBIO. 2017;8(4):1-8.
- [16]. Mishra SS, Moharana SK, Dash MR. Review on Cleome gynandra. Int J Res Pharm Chem. 2018;8(2):1-8.
- [17]. Deepashree CL, Gopal S. Evaluation of Cleome gynandra for its chemical composition, antioxidant potential, and detection of flavonoids using thin layer chromatography. Int J Sci Res. 2014;3(10):1-6
- [18]. Oboh G, Ademosun AO, Akinmoladun Afolabi O. Antioxidant and antimicrobial properties of Cleome gynandra stem extracts. J Food Sci Technol. 2022;59(4):1234-1242.
- [19]. Singh A, Sharma S, Bhattacharya S. Pharmacological properties of Cleome gynandra roots: A review. J Pharm Sci Res. 2021;13(5):312-318.
- [20]. Kumar S, Mishra S, Pandey A. Phytochemical analysis and antimicrobial activity of Cleome gynandra seeds. Indian J Pharm Sci. 2020;82(6):1045-1052
- [21]. Gupta R, Singh P, Sharma S. Medicinal uses and phytochemical constituents of Cleome gynandra flowers. J Ethnopharmacol. 2019;245:1121-1128
- [22]. Verma P, Yadav S, Singh R. Chemical composition and biological activities of Cleome gynandra fruiting capsules. Phytochem Lett. 2018;25:134-139
- [23]. Anbazhagi K, Kadavul G, Suguna L, Petrus AJA. Pharmacognostical and in vitro antioxidant potential of Cleome gynandra Linn. leaves. Nat Prod Radiance. 2009;8(2):151-157.
- [24]. Narendhirakannan RT, Kandaswamy M, Subramanian S. Anti-inflammatory activity of Cleome gynandra L. on hematological and cellular constituents in adjuvant-induced arthritic rats. Indian J Med Food. 2005;8(1):93–99.
- [25]. Mule SN, Ghadge RV, Chopade AR, Bagul BA, Patil SB, Naikwade NS. Evaluation of antinociceptive and anti-inflammatory activity of leaves of Gynandropsis pentaphylla. J Herb Med Toxicol. 2008;2(1):41–44.
- [26]. The Ayurvedic Pharmacopoeia of India. Part I, Vol. I. Ministry of Health and Family Welfare, Govt. of India; 1999.

Volume 10, Issue 5 Sept - Oct 2025, pp: 668-675 www.ijprajournal.com ISSN: 2456-4494

- [27]. Reddy KRC, Venkatesh S, Ravichandran T. (2009). Anti-inflammatory activity of natural products: A review. Indian Drugs, 46(9): 693-700.
- [28]. Choudhury S, Sharan RN, Khanna VK. (2011). Medicinal plants with anti-inflammatory potential. Indian Journal of Natural Products and Resources (IJNPR), 2(3): 286-293.
- [29]. Parihar MS, Hemnani T. (2000). Phenolic antioxidants attenuate oxidative stress in aging. Indian Journal of Physiology and Pharmacology, 44(1): 25–34.
- [30]. Pandey KB, Rizvi SI. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Indian Journal of Clinical Biochemistry, 24(3): 270–278.
- [31]. Sharma A, Bhatia S, Khanna D. (2012). Analgesic potential of herbal remedies: A review. Indian Drugs, 49(8): 5–12.
- [32]. Kaur R, Singh D, Chopra K. (2015). Role of phytochemicals in pain modulation: Evidence from experimental studies. Indian Journal of Experimental Biology, 53(9): 583–592.
- [33]. Balasubramanian S, Rajesh E, Ramya R. (2015). Herbal remedies for cancer treatment: An overview. Indian Journal of Research in Pharmacy and Biotechnology, 3(3): 255–261.
- [34]. Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. (2020). Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Frontiers in Pharmacology (Indian collaboration). Indian Journal of Natural Products and Resources (IJNPR), 11(2): 95–105.
- [35]. Singh P, Kumar A, Dubey NK, Gupta R. (2009). Essential oils and phytochemicals in management of fungal infections: A review. Indian Journal of Natural Products and Resources (IJNPR), 8(2): 116–122.
- [36]. Narendhirakannan RT, Subramanian S, Kandaswamy M. (2005). Antifungal potential of phytochemical-rich extracts of Cleome gynandra L. against pathogenic fungi. Indian Journal of Experimental Biology, 43(9): 789–793.
- [37]. Choudhury S, Roy S, Khanna VK. (2011). Phytochemicals with antibacterial potential: Evidence from Indian medicinal plants. Indian Journal of Natural Products and Resources (IJNPR), 2(4): 365–372.

- [38]. Sharma S, Singh B, Kumar A. (2010). Antidiabetic drugs: Current therapies and limitations. Indian Drugs, 47(2): 11–18.
- [39]. Choudhury S, Sharan RN, Khanna VK. (2012). Phytochemicals with antihyperglycemic activity: Evidence from Indian medicinal plants. Indian Journal of Natural Products and Resources (IJNPR), 3(2): 145–152.
- [40]. Sharma A, Kumar P. (2010). Conventional and herbal antidiarrheal agents: An overview. Indian Drugs, 47(12): 7–14.
- [41]. Choudhury S, Sharan RN, Khanna VK. (2011). Phytochemicals with anti-diarrheal activity: Evidence from Indian medicinal plants. Indian Journal of Natural Products and Resources (IJNPR), 2(4): 390–396.
- [42]. Reddy KRC, Venkatesh S, Ravichandran T. (2009). Conventional antipyretic drugs and their limitations. Indian Drugs, 46(9): 693–700.
- [43]. Choudhury S, Sharan RN, Khanna VK. (2011). Phytochemicals with antipyretic activity: Evidence from Indian medicinal plants. Indian Journal of Natural Products and Resources (IJNPR), 2(3): 286–293.
- [44]. Raghavan S, Shanmugasundaram N. (2013). Conventional and herbal approaches in wound management. Indian Drugs, 50(4): 7–15.
- [45]. Choudhury S, Sharan RN, Khanna VK. (2012). Phytochemicals with wound healing potential: Evidence from Indian medicinal plants. Indian Journal of Natural Products and Resources (IJNPR), 3(1): 45–52.
- [46]. Chweya JA, Mnzava NA (1997). Cleome gynandra L.: Promoting the conservation and use of underutilized crops. IPGRI, Rome.
- [47]. Ngugi MP et al. (2017). Phytochemical and pharmacological properties of Cleome gynandra. J Med Plants Res, 11(24): 383–390.
- [48]. Moyo M et al. (2021). Cleome gynandra, a nutrient- and phytochemical-rich leafy vegetable: A review. Food Res Int, 139: 109837
- [49]. Gopalakrishnan S et al. (2012). Fatty acid composition of Cleome gynandra seed oil. Indian J Nat Prod Res, 3(2): 207–210.
- [50]. Reddy V et al. (2016). Amino acid and proximate composition of Cleome gynandra seeds. J Food Sci Technol, 53(6): 2579–2585.

Volume 10, Issue 5 Sept - Oct 2025, pp: 668-675 www.ijprajournal.com ISSN: 2456-4494

- [51]. Parthasarathy R et al. (2012). Review on Cleome gynandra. Int J Pharm Biol Arch, 3(2): 255–259.
- [52]. Pandey A et al. (2015). Ethnomedicinal uses of Cleome gynandra in India. J PharmacognPhytochem, 4(3): 13–18.
- [53]. Ochieng J et al. (2014). Antifungal activity of Cleome gynandra extracts against dermatophytes. Afr J Tradit Complement Altern Med, 11(3): 9–15.
- [54]. Afolayan AJ et al. (2017). Antimicrobial potential of Cleome gynandra aerial parts. S Afr J Bot, 113: 399–404.
- [55]. Singh R et al. (2018). Phytochemical importance of stem extracts of Cleome gynandra. Indian J Nat Prod Res, 9(4): 321–326.
- [56]. Mohammed A et al. (2022). Therapeutic potential of Cleome gynandra in chronic diseases: A review. J Ethnopharmacol, 289: 115054.