Volume 9, Issue 5 Sep - Oct 2024, pp: 464-468 www.ijprajournal.com ISSN: 2456-4494

Addressing the Issue of Adulteration

M.S Megha¹, Thomson .J.Robin², S.Sooraj³

1)2nd year PG scholar, Department of Dravyaguna vigyana, Mannam Ayurveda Co-operative Medical college pandalam.

2)Professor and HOD, Department of ShalyaTantra, Mannam Ayurveda Co-operative Medical College Pandalam.

3)Professor and HOD, Department of Dravyaguna vigyana, Mannam Ayurveda Co-operative Medical college pandalam.

Date of Submission: 15-09-2024 Date of Acceptance: 25-09-2024

ABSTRACT

Ayurveda is an ancient science with a vast body of knowledge. Today, there is a growing global interest in Ayurvedic medicines due to their safety and effectiveness. Approximately 80% of the rural population relies on Ayurvedic treatments, making the proper standardization of Ayurvedic drugs essential. However, adulteration has become a significant concern. Adulteration involves the debasement of a product, where a substance mimics the appearance of a genuine drug but lacks its properties. Various types of adulteration exist, necessitating effective solutions. Physicians should identify and report adulterants to the relevant authorities. Several methods are available for detecting adulterants, and conducting these tests is crucial for ensuring the authenticity of Ayurvedic drugs. Addressing adulteration is key to preventing distribution of counterfeit drugs maintaining the availability of genuine products in the market. Adulteration is generally considered an intentional malpractice. By rectifying adulteration practices, we can enhance the effectiveness of Ayurvedic medicines in treating diseases

I. INTRODUCTION

Ayurveda is a system of medicine aimed at maintaining health in healthy individuals and curing those who are ill. To achieve these goals, four essential components of treatment are necessary: Bhishak (physician), Dravya (medicine), Upasthatha (nurse or attendant), and Rogi (patient). Among these, Dravya (or Bheshaja) is crucial, as it must be both safe and effective, and free from contaminants. Nowadays, the availability of genuine drugs is decreasing due to increased substitution and adulteration of crude drugs. Many people today rely on Ayurvedic medicines.

Adulteration, which is both widely recognized and legally significant, involves the

debasement of a product by substituting the original crude drug partially or wholly with other similar-looking substances. Reasons adulteration include drug scarcity, the desire to increase profit, and high prices. Adulteration can manifest in various ways, such as admixture, inferiority, sophistication, substitution, spoilage, and deterioration. It may be intentional or unintentional. Intentional adulteration is carried out deliberately by manufacturers or suppliers, often driven by high market prices and profit motives. Unintentional adulteration, on the other hand, occurs without any malicious intent from manufacturers or suppliers.

Addressing the issue of adulteration involves identifying the sources ,understanding the consequences and implementing preventive measures.

The keysteps in the process of adulteration are

- 1. Selection of inferior substances
- 2. Addition of harmful substances
- 3. Mislabelling or Mis presentation
- 4. Dilution of genuine ingredients
- 5. Failure in quality control
- 6. Distribution in the market
- 7. Detection and identification
- 8. Legal and regulatory consequences

II. MATERIALS AND METHODS

ASHOKA¹

Botanical name: Saraca asoca

Family: Fabaceae

- It is one of the most sacred and legendary trees in India.
- > All parts of the plant are pharmacologically active.
- Stembark is renowned for its medicinal properties especially in gynaecological & obstetrical problems.

Volume 9, Issue 5 Sep - Oct 2024, pp: 464-468 www.ijprajournal.com ISSN: 2456-4494

- It is becoming rarer in its natural habitat.
- It has been very widely used in Indian medicine from the time immemorial for the treatment of uterine genital and other reproductive disorders in women.

Adulterants of Ashoka

- 1. Polyalthia longifolia
- 2. Bauhinia variegate
- 3. Trema orientalis
- 4. Shorea robusta

MORPHOLOGY

Saraca asoca	Polyalthia
	longifolia
Tree grows upto 6-9	
m height.	Tree or shrub
Bark on old stems is	Bark is dark
dark green in colour,	greyish brown in
often marked by	colour and is
bluish & ash white	smooth.
patches of lichen.	

- ✓ Morphologically the bark of Ashoka and polyalthia longifolia look like similar.
- Macroscopic evaluation of the Ashoka bark not fulfilling the API standards.
- ✓ In microscopically genuine Ashoka is fibrous yellow colour and no characteristic odour. But the adulterated one doesn't have these properties.
- ✓ Ashoka contains plenty of stone cells, often containing prismatic crystals of calcium oxalates and simple spherical shaped starch grain. The market sample shows plenty of fibres and shown rosette and acicular crystals that is the peculiar feature of Polyalthia longifolia.

ORGANOLEPTIC EVALUATION

Treath (each free free free free free free free fre			
Macroscopic	Genuine	Adulterated	
and	sample	sample	
microscopic			
Shape	Curved and	Curved and	
	channelled	channelled	
Size	7mm	12 mm	
	thickness	thickness	
Colour	External -	Greenish	
	greyish		
	brown		
	Internal –		
	reddish		
	brown		
Texture	External with	Smooth,	

	warty protuberances and enclosing circular to elongated lenticels	waxy, slightly glaberous
Fracture	Tough	Characteristic
Odour	Odourless	Characteristic
Taste	Astringent	Characteristic

Preliminary phytochemical characters

- 1. Foreign matter > genuine drug
- 2. Moisture content > genuine drug
- 3. Ash value > genuine drug

Tannin quantification

Tannin most widely occurring group of secondary metabolites present in different families of higher plants.

4. Tannin is seen as hydrolysable tannin and condensable tannin

Ashokacontains condensed tannin

During the quantification of marketed Ashoka the tannin content is very less as comparing with the original Ashoka.

HISTOLOGICAL EVALUATION

Histologica	Genuine	Adulterated
1 characters	Ashoka	Ashoka
Cork	Multilayere	Multilayered
	d cork with	cork with
	tangentially	reddish
	elongated	brown
	cells	contents
Cortex	Composed	Scattering
stone cells	of thick	patches of
	walled	stone cells
b) starch	Parenchyma	thick walled
grains	cells with	and with a
	bands of	wide lumen
c)calcium	stone cells	seen as
oxalate	Simple	group
crystals		
	Prismatic	Rosette
		shaped
d)	Biseriated	Multiseriate
medullary	and funnel	d and funnel
rays	shaped	shaped

HPTLC used for purity control of chemical pesticides, steriodes, water analysis.

Volume 9, Issue 5 Sep - Oct 2024, pp: 464-468 www.ijprajournal.com ISSN: 2456-4494

HPTLC finger printing analysis analysis show the genuine sample has 8 number of peaks but the adulterates sample has 12 peaks.

Fluorescence analysis is an important standardisation parameters phytochemical present in drug show fluorescence when shown to light.

There was huge difference in the light observed in genuine and marketed sample.

SARIVA²

Botanical name - Hemidesmus indica

Family - Apocynaceae

Hemidesmus indica or sariva root is extensively used in Indian traditional used in Indian traditional system due to its biological activities.

It can be adulterated by Decalipus hamiltonii.

Its root extensively used in Indian traditional system due to its biological activities and the Decalipus hamiltonii is another member but from the same family.

MACROSCOPIC EVALUATION

	Hemidesmus	Decalipus	
	indicus	hamiltonii	
Shape	Cylindrical	Cylindrical,	
		stout	
External	Dark brown	Brownish	
colour			
Internal	Pale yellow	Pale yellow	
colour			
Fracture	Transverse	Smooth when	
	cracks and	freshwrinkled	
	longitudinal	and	
	fissures	longitudinally	
		ridged on dried	
Texture	Hard	Hard	
Odour	Characteristic	Strong	
	pleasant smell	characteristic	
		pleasant smell	
Size	Variable in	Variable in size	
	size		
Taste	Sweetish	Sweetish	

- > It can be adulterated by Decalipushamiltonii
- Microscopically cork, cortex, phloem, xylem, medullary rays and pith & in powder microscopy size and shape of corkcell, fibre, fibre trachieds, vessels, xylem parenchyma cells were different from each other.
- ➤ Water soluble extract, alcohol soluble extract, hexane soluble extract all these values are high for Decalipushamiltonii when comparing to Hemidesmusindicus.

➤ In HPTLC the number of bands present in Hemidesmusindicus are 8 while in the case of Decalipushamiltonii only 5 bands are present.

Studies showed that the plant Decalipushamiltonii is sold in the market in the name of Sariva(Hemidesmusindicus).

KUSHTA³

Botanical name: Saussurea lappa

Family: Asteraceae

Kushta plant grows abundantly on the Himalayas and Kashmir valleys between 2500-3000metre altitude.

Useful part is root

- Adulterants of kushta

 1) Inula roveleana
- 2) Cardus nutans
- 3) Euphorbia thomsoniana
- 4) Salvia lanata
- 5) Aconitum heterophyllum
- 6) Costus speciousus
- 7) Kyllingia triceps
- 8) Arctium lappa

MORPHOLOGY

Root Stout, upto 60cm long, brownish with longitudinal streaks and furrows with reticulatesurface , having characteristic odour in genuine sample

In adulterated sample contain stout, fusiform, arched, slightly twisted roots Outer surface is rough, full brown, or light grey in colour

Tranverse section of root show brownish white surface with 3 distinct regions.

ORGANOLEPTIC EVALUATION

	Genuine	Adulterated
	sample	sample
Appearance	Fusiform	Stout fusiform
	conical and	arched or
	tapering	slightly
	collapsing	twisted roots,
	in the centre	outer surface
	having	is rough,dull
	longitudinal	brown or light
	wrinkles	grey in colour
	which	with
	anastomoses	longitudinal
	and ridges	wrinkles and
	running	small
	straight	tubercles
Size	7-8cm in	15cm long

Volume 9, Issue 5 Sep - Oct 2024, pp: 464-468 www.ijprajournal.com ISSN: 2456-4494

		1
	length	1-5.4cm broad
	2-4 cm	
	thickness	
Colour	Saddle	Brownish
	brown	white surface
Taste	Start with	Very bitter
	sweeteness	
	and then	
	bitter	
Odour	Strong and	Characteristic
	aromatic	odour
Fracture	Short and	Short
	horny	

Studies shown that the kushta we brought from the market were identified as root of ashwagandha and roots of pushkaramoola.

The phytochemical tests also show variation in adulterated one when comparing to API standards HPTLC also show variation.

MANJISHTA4

Botanical name - Rubia cordifolia

Family – Rubiaceae

Useful part- stem

They are traditionally used for curing blood disorders, skin disorders, inflammatory, haemostatic, urolithotripic, antipyretic, analgesic, antihelminthic & for improving complexion.

Adulterant

Rubia tinctorum

It has also contain lucidin which is known for its genotoxicity.

MORPHOLOGY

Rubia cordifolia	Rubia tinctora (adulterant)	
Stems are cylindrical, slightly flattened	Stems are stout cylindrical	
Smooth with no distinct striations	Rough with distinct longitudinal striations	
Wiry upto 0.3cm thick	Up to 0.8cm thick	
Light reddish brown with distinct nodes possibly having scaly leaves	Dark reddish brown with no distinct nodes or scaly leaves.	

MICROSCOPY

	Genuine	Adulterated
Cork	Wider with dome	Not wider
	shaped structure,	
	consisting of	

Cortex	squarish and tangentially elongated thinwall cells, some contain acicular calcium oxalate (cao) crystals as isolated or bundles present or more Tangentially elongated thin walled, some contain acicular cao crystals as isolated or bundles present or more	Less present
Secondary phloem	Not wider	Wider
Secondary xylem	Wider	Not wider
Pith	Not wider	Wider

✓ GC-MS analysis of Rubia cordifolia revealed the presence of 9 phytoconstituents while Rubia tinctorum revealed the presence of 6 phytoconstituents, which results they are different from each other.

III. RESULT AND DISCUSSION

- Majority of the ayurvedic drugs we got from the market are adulterated.
- > If we use these adulterated drugs we can't get the maximum efficacy.
- ➤ It is crucial to enforce strict regulations, implement quality control measures, raise public awareness and invest in research and development.
- ➤ By collectively working towards these goals we can safeguard the efficacy and safety of ayurvedic drugs.
- ➤ In Ayurveda, there are various methods to assist the quality of raw materials basically most of them are subjective and required definite objective criteria to enhance knowledge about them.
- Now a days significant number of methods to authenticate crude drugs.
- Simple methods like organoleptic characters may hold good to assess the genuine of certain drugs but some may require highly sophisticatedtechniques too.
- It is in the hand of researcher to choose the right method for the drug of interest.

Volume 9, Issue 5 Sep - Oct 2024, pp: 464-468 www.ijprajournal.com ISSN: 2456-4494

➤ DNA fingerprinting, gas chromatography, high performance liquid chromatography are the most sophisticated methods which can assess the genuinity very keenly.

IV. CONCLUSION

We understand from these findings that majority of the drugs we got from the market are adulterated so it is necessary to do more research and information required to rectify and minimize the process of adulteration for improving the safety of patient. Hence it is essential to cultivate more drugs in our surroundings. If we use adulterated drugs for preparing formulations it can cause the adverse effects and we don't get the expected efficacy.

REFERENCES

- [1]. Ramachandran, Sari. (2023).

 Pharmacognostical and Phytochemical
 Evaluation Of Different Market Samples
 Of Asoka bark (Saracaindica Linn) IN
 KERALA. Kerala University of Health
 Sciences.
- [2]. Vidya Pujari, Shrikanth P.A Critical Phytochemical Analysis of Different Sources of Sariva From its Natural Habitat. AYUSHDHARA, 2020;8(2):3139-3146.
- [3]. Nagar, Lalit. (2018). Market Study of Kushta (Saussurealappa C.B. Clarke.) an important Himalayan Herb.
- [4]. Ghanshyam Kamani, Rohan Sanghani, Vaibhavi Savalia, Devang Pandya. Detection of Adulteration in Rubia cordifolia-A Chromatographic Approach. A8.doi:10.52711/0974-360X.2021.00695