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ABSTRACT 

Repurposing medications provide an opportunity to 

reach previously unreached patient populations 

with proven safe therapeutics. Many examples exist 

of finding new applications for already-known 

chemicals; most come from unintentional findings 

or focused study that was recently limited to the 

mode of action of a certain medicine. With the 

advent of big data repositories and related 

analytical tools, as well as the need for novel 

approaches to drug research and development, the 

development of systematic methods for medication 

repurposing has garnered interest in recent years. 

Currently, several state-of-the-art computational 

methods are available that enable both 

experimental and in silico methods to support the 

systematic reuse of screens. Integrating molecular 

data with other data is necessary for an efficient 

drug repurposing pipeline to guarantee reliable 

findings. 
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I. INTRODUCTION 
By finding new applications for already-

existing molecules and lowering the time, cost, and 

risk involved in the latter process, drug repurposing 

has the potential to improve traditional drug 

discovery. (1) To offer numerous benefits in 

comparison to de novo drug discovery, the 

traditional method of medication development that 

entails searching for a novel active ingredient. 

Using the current corpus of knowledge in medicine 

to identify drug repositioning prospects more 

quickly could mean fewer development risks, 

according to Ashburn and Thor. (1)whereas 

Allarakhia utilized "potential drug candidates" as a 

foundation for repositioning pharmaceuticals, 

connected "drug repurposing" to advances 

employing previously approved medicines.(2) 

 Drug repositioning-related efforts are 

being funded by several nations worldwide. In the 

US, for example, the National Centre for 

Advancing Translational Sciences (NCATS) 

launched the Discovering New Therapeutic Uses 

for Existing Molecules Program.The initiative's 

stated objective is "to improve the difficult and 

drawn-out process of developing new treatments 

and cures for disease by finding new uses for 

agents that have already passed several important 

development path milestones."(3)Researchers in 

the UK can apply for funds to repurpose clinical 

studies through the Medical Research Council's 

(MRC) Developmental Pathway Funding 

Scheme.(4)The study, termed "stimulation of drug 

rediscovery," is supported by the Netherlands 

Organization for Health Research and 

Development (ZonMw) and focuses on drug 

repositioning.(5) 
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1. DRUG REPURPOSING IN PARKINSON’S DISEASE: 

 
● Ambroxol: 

The glucosylceramidase beta acid (GBA1) 

gene, which has been found to be the single largest 

risk factor for the development of idiopathic 

Parkinson's disease (PD), is mutated in up to 25% 

of PD patients. (6)While Gaucher's disease (GD) 

can be caused by a single mutation, Parkinson's 

disease (PD) is more likely to result from 

homozygous or compound heterozygous mutations 

in this gene. It is thought that the GBA-encoded 

enzyme glucosecerebrosidase (GCase), which is 

involved in altering lysosomal function and α-

synuclein folding, is responsible for the GBA-

mediated loss of function in Parkinson's disease 

(PD), albeit the precise mechanism underlying this 

loss of function remains unclear. The substantia 

nigra (SN) has notably decreased GCase activity in 

both GBAPD-positive and GBA-negative 

individuals. (7, 8) 

Reduced GCase activity in animal models 

causes greater α-synuclein accumulation in the 

neocortical accumulation and related in vivo motor 

and cognitive impairments. (9)Clinical and 

behavioral issues can be avoided by using viral 

gene therapy to induce exogenous 

GCaseoverexpression. (10),Several studies 

investigated into the use of tiny molecules to 

increase GCase activity, despite potential difficulty 

with transport to affected tissues. These molecules 

work as chaperones to increase GCase activity by 

assisting mutant GCase molecules in folding 

appropriately in the endoplasmic reticulum to 

enable their passage to lysosomes. (6)Ambroxol, a 

secretolytic medication licensed to treat respiratory 

disorders, has been shown to have pharmacological 

chaperone properties. (11) 

 

● Isradipine:  

The high energy requirements of the 

neurons' spontaneous pacemaking properties are 

thought to be related to the dopaminergic neurons 

of the SN pars compacta (SNc) in Parkinson's 

disease (PD) selective vulnerability and 

degeneration. (12)To accompany this independent 

pacemaking, mild oscillations of calcium input are 

brought on by the opening of the Cav1 (Cav1.2, 

Cav1.3) Ca2+ channels in the plasma membrane. 

These channels support mitochondrial intermediate 

metabolism and oxidative phosphorylation to help 

meet intracellular bioenergetic needs. However, 

people become more reliant on these outlets as they 

become older. Combining this continuous 

generation of free radical species with other 

stressors associated with Parkinson's disease (PD), 

such as misfolded α-synuclein or mutations in 

GBA1, can lead to an increase in mitochondrial 

oxidative stress, which expedites the aging and 

death of cells. (13)Although the Cav1 Ca2+ 

channels are required for the SNcpacemaking 

function, they are not essential for it. Therefore, 

SNc dopamine neurons may deteriorate less 

quickly if these channels are blocked to lower 

oxidative stress.  

Epidemiological data lend support to the 

theory that people on centrally acting 

dihydropyridines (DHPs), calcium channel 

blockers that have been used for many years to 

treat hypertension and angina, may be less likely 
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than people on other treatments to develop 

Parkinson's disease (PD).(14-16)The most likely 

subtype of Cav1 Ca2+ channels to mediate risk in 

Parkinson's disease is thought to be Cav1.3 

channels rather than the more common Cav1.2 

channels.  

 

● Inosine: 

People with higher serum urate levels, an 

antioxidant, had a lower risk of developing 

Parkinson's disease (PD), according to research 

utilizing Mendelian randomization. (17, 18); 

however, the correlation is weaker and less reliable 

in women (19-22). Moreover, a lower rate of 

disease progression is linked to increased urate 

levels in PD patients' serum and CSF 

(23)Moreover, therapy of mice to raise urate levels 

protected against dopaminergic cell death caused 

by MPTP, 6-OHDA, and rotenone in toxin-based 

models of Parkinson's disease. It was thought that 

these effects resulted from modifications to Akt-

GSK-3B signaling and nuclear factor (erythroid-

derived 2)-like 2 (Nrf2) protein, which is a master 

regulator of the oxidative stress response. (19-22) 

 

● Ursodeoxycholic Acid (UDCA): 

Considering how crucial mitochondrial 

function is to the etiology of both familial and 

sporadic Parkinson's disease (27) In order to find 

possible compounds for repurposing in Parkinson's 

disease (PD), researchers screened 2000 

compounds from the Microsource Compound 

library using a unique high-throughput test. They 

evaluated the compounds' rescue effects on 

mitochondrial activity in parkin (PARK2)-mutant 

fibroblasts. (28) Due to the lack of clinical safety 

data and the fact that neither medication was an 

approved substance, researchers next assessed the 

effects of ursodeoxycholic acid (UDCA), which is 

closely related. UDCA is the first-line treatment for 

primary biliary cirrhosis and has been used for 

many years as a treatment for cholestatic liver 

disease. Later research revealed that UDCA, 

possibly through elevated Akt phosphorylation, 

restored mitochondrial activity in both parkin- and 

LRRK2-mutant cells. In hepatocellular models, 

UDCA has also shown strong anti-apoptotic, 

antioxidant, and anti-inflammatory properties. (29, 

30) 

Research has shown that similar effects 

apply to other neurodegenerative disease models, 

including Parkinson's disease. It has been 

demonstrated that UDCA can improve behavioral 

function in rodents by increasing the survival of 

nigral transplanted tissue and partially rescuing a 

PD model of Caenorhabditis elegans. (31, 32) 

 

● Deferiprone: 

An emerging body of research indicates 

that disturbance of cerebral iron homeostasis is 

linked to several neurodegenerative diseases, 

including Parkinson's disease (PD), and may thus 

be a new target for treatment. While iron builds up 

in the brain during normal aging, investigations on 

post-mortem, sporadic Parkinson's disease 

(sporadic PD) patients' magnetic resonance 

imaging (MRI), and transcranial ultrasonography 

imaging have shown significant regional iron 

accumulation in the SN. (33-35) Subsequent 

research has verified that hyperiron deposits in 

certain dopaminergic neurons within the SNc are 

linked to neuromelanin granules, Lewy bodies, and 

activated microglia. (36-38) 

By producing reactive oxygen species, 

stimulating microglia and pro-inflammatory 

pathways, encouraging α-synuclein misfolding and 

aggregation, and inducing cell death through iron-

dependent pathways known as "ferroptosis," this 

excess labile iron can have an impact on 

neurodegeneration. (39-41) In contrast to other iron 

chelators, deferiprone can pass the blood-brain 

barrier in mouse models and redistribute 

extracellular excess iron to the extracellular 

apotransferrin to prevent significant systemic iron 

losses.(41) Clinical trials of repurposing drugs 

given in the following table.(Table No 1) 

 

Sr 

no 
Name of drug 

Clinical trial gov 

ID 
Phase Dose Description 

1 Ambroxol NCT02941822 Phase 2 Day 1-7: 60 mg 

three times a day 

Day 8-14: 120 mg 

three times a day 

180 mg three times 

a day for days 15–

21 

Day 22–28: Three 

Participants with 

Parkinson's disease 

will have their safety, 

tolerability, and 

pharmacodynamics 

assessed in this trial. 

Throughout the 

duration of the trial, 



 

 

International Journal of Pharmaceutical Research and Applications 

Volume 9, Issue 3 May-June 2024, pp: 1382-1393  www.ijprajournal.com   ISSN: 2456-4494 

                                      

 

 

 

DOI: 10.35629/4494-090313821393   Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal Page 1385 

times a day, 300 mg 

Day 29-186: 420 mg 

three times a day 

participants will 

administer ambroxol 

at five different dose 

levels and complete 

clinical assessments, 

lumbar punctures, 

venepunctures, 

biomarker blood tests, 

and cognitive 

assessments. 

2 Isradipine NCT02168842 Phase 3 In this multi-center 

trial, 336 people will 

be enrolled at about 

56 sites throughout 

the US and Canada. 

In this trial, patients 

with recently 

diagnosed 

Parkinson's disease 

are treated with 10 

mg of isradipine vs 

a placebo. 

 

According to findings 

from laboratory 

investigations, 

isradipine may stop 

the onset of 

Parkinson-like 

symptoms in animal 

models. In certain PD 

patients, isradipine has 

been studied. In the 

first research, patients 

with early Parkinson's 

disease (PD) and 

normal blood pressure 

were given isradipine 

controlled release 

(CR), which was 

found to be safe and 

reasonably well 

tolerated 

3 Inosine NCT02642393 Phase 3 Capsules containing 

500 mg of inosine 

(active drug) or 

~500 mg of lactose 

(placebo) will be 

taken orally up to 

two capsules three 

times per day (i.e., 

up to 3 g/day) for 24 

months. 

Gradually increasing 

the initial dose to the 

anticipated goal dose, 

it will be optimized 

based on individual 

parameters such as 

gender and 

pretreatment serum 

urate. 

The primary outcome 

variable (MDS-

UPDRS) will be 

measured at every 

study visit following 

screening, and 

secondary outcome 

variables. 

4 Ursodeoxycho

lic acid 

(UDCA) 

NCT03840005 Phase 2 30 patients will be 

randomised to 

UDCA at a dose of 

30 mg/kg or 

matched placebo 

using a 2:1 split (20 

patients on UDCA, 

Excellent safety and 

tolerability of UDCA 

at a dose of 30 mg/kg 

were validated by the 

UP trial. The UDCA 

treatment group 

experienced mild 
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10 on placebo). This 

will include 48-

week exposure 

period & a 

subsequent 8-week 

washout period. 

Every patient will 

receive a thorough 

evaluation at 

Screening, Baseline, 

12, 24, 36, 48, and 

56 weeks. The trial 

medication will be 

taken orally three 

times a day in equal 

amounts with meals.   

 The dose will be 

increased gradually 

by 250 mg (1 

capsule) every 3 

days until patient 

reaches a dose of 30 

mg/kg. 

diarrhea and nausea 

more frequently than 

any other treatment-

related adverse event. 

Only one patient 

experienced serious 

adverse effects while 

on a placebo. 

 

5 Deferiprone NCT02655315 Phase 2 Half of participants 

will receive the 

deferiprone to 15 

mg / kg twice daily 

morning and 

evening (30mg / kg 

per day), while the 

other half will 

receive a 

placeboThe 

treatment lasts nine 

months. 

This study assesses the 

efficacy of 

ironchelation as a 

treatment approach to 

impede Parkinson's 

disease progression. 

 

Table No 1: Clinical trials for drug repurposed in parkinson’s disease. 

 

DRUG REPURPOSING IN ALZHEIMER’S DISEASE: 
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⮚ Anticancer agents:  
The study concentrated especially on the 

inverse link between Alzheimer's and cancer. The 

idea that dementia and malignant neoplastic disease 

share signaling pathways—such as oxidative stress, 

mitochondrial dysfunction, misfolded protein 

production, and impaired cell metabolism—

explains the association (42). Studies have also 

demonstrated that, in comparison to the control 

group, older individuals who have survived breast 

cancer and had chemotherapy have a decreased risk 

of developing AD (43). Research on cancer 

patients has indicated that their risk of Alzheimer's 

disease is minimal, and vice versa (44). Research 

has previously shown a link between Alzheimer's 

disease and cancer, and as a result, several anti-

cancer medications are being repurposed to treat 

AD. A select few of them, including bexarotene, 

carmustine, imatinib, paclitaxel, etc., have recently 

attracted scientific interest. 

 

● Bexarotene: 
Antineoplastic bexarotene is essentially 

authorized for the management of cutaneous 

cancer. The US FDA approved it in late 1999 for 

the treatment of neoplastic disorders; however, 

more recent preclinical and clinical research 

suggests that it may also be used to treat 

Alzheimer's disease. It enhances brain function by 

lowering the amount of amyloid β produced in the 

brain. A small number of preclinical and clinical 

trials provided encouraging evidence for the use of 

anticancer drugs in the treatment of AD (45,46). 

Cramer et al. 2012 (47). Apply bexarotene in the 

Repositioning method to treat AD. According to 

the study, bexarotene given orally to an animal 

model of AD boosted the amount of amyloid β 

cleared in less than 72 hours—by more than 50%. 

Once more in 2013 Bachmeier et al (48). 

Established that, in an apoE-dependent manner, 

Retinoid X receptor (RXR) stimulation causes 

metabolic clearance of Amyloid β and rapidly 

recovers behavioral impairments. One clinical 

study even backs up the repositioning of 

bexarotene for the treatment of Alzheimer's 

disease. 

 

⮚ Anti-Hypertensive drugs: 

The incidence of AD is correlated with 

hypertension, and numerous research have 

examined the possible therapeutic effects of 

numerous antihypertensive drug types in AD. 

Through ischemia brought on by atherosclerosis 

and cerebral amyloid angiopathy, hypertension can 

damage the hippocampal tissue. 

 

● Nilvadipine: 
One calcium channel blocker used to treat 

hypertension is nilvadipine. However, it is being 

utilized for Alzheimer's Reuse (49). Researchers 

found in 2013 that spinal fluid from older adults 

with high blood pressure or hypertension showed 

greater signs of Alzheimer's disease. High blood 

pressure can damage blood arteries in the brain, 

impairing two of the brain's most vital functions: 

thinking and memory (50). When used in 

Alzheimer's patients, nilvadipine is quite safe and 

well tolerated. It has been demonstrated in clinical 

research that this medication stabilizes cognitive 

decline and reduces the incidence of AD. In vitro 

research indicates that nilvadipine reduces the 

buildup of amyloid β; nevertheless, the effects are 

observed at significantly larger levels than those 

shown on L-type calcium channels (51,52). 

Nivaldipine is a potential treatment for AD since it 

has been shown to potentially improve the removal 

of amyloid β from the brain. Phase 3 clinical trial 

already demonstrating a positive outcome for the 

treatment of AD. 

 

● Carvedilol: 
Carvedilol is a non-selective vasodilator 

and antagonist of α/β-adrenergic receptors. The 

medication used to treat high blood pressure. It 

considerably lowers the amount of brain oligomeric 

Amyloid β material. Neuronal transmission was 

significantly enhanced by carvingilol therapy, and 

this enhancement was associated with the 

preservation of certain learnings in Alzheimer's 

patients' brains (53,54). According to a recent 

study, the medication helps AD patients' memory. 

Carvedilol possesses a specific conformation of the 

3D pharmacophore, which is linked to its capacity 

to bind Amyloid β and prevent it from aggregating 

into oligomeric fibrils. In mice models of AD, 

carvedilol improves synaptic transmission and 

amyloid β related and cognitive outcomes (55,56). 

A hopeful argument in favour of using the 

medication for AD is the ongoing phase IV clinical 

trial. Clinical trials of repurposing drugs given in 

the following table. (Table No 2) 
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Sr 

no 
Drug 

Clinical trial gov 

ID 
Phase Dose Description 

1 Bexarote

ne 

NCT01782742 Phase 2 300 mg of 

bexarotene 

administered 

for one month 

compared to 

placebo. 

The purpose of this research is 

to ascertain the safety and 

impact on aberrant proteins 

identified in the brain. 

 

2 Nilvadip

ine 

NCT02017340 Phase 3 8 mg of 

nilvadipine 

taken once a 

day for 78 

weeks 

Clinical trials using nilvadipine 

have demonstrated stability of 

cognitive decline and decreased 

incidence of AD, demonstrating 

to both symptomatic and 

disease-modifying advantages. 

For AD patients, nilvadipine is 

safe and well tolerated. 

 

 

3 Carvedil

ol 

NCT03775096 Phase 2 Dose for oral 

formulations is 

3.125 mg, 6.25 

mg, 12.5 mg, 

25 mg 

Carvedilol is associated with 

greater reduction of sympathetic 

activity, as measured by 123I-

MIBG myocardial uptake, than 

metoprolol and other selective 

beta-blockers. 

Table No 2: Clinical trials of drug repurposed in Alzheimer’s disease. 

 

 

DRUG REPURPOSING ON BIPOLAR DISORDER: 

 
Fig 3: Signs and Symptoms of bipolar disorder 

 

● Aspirin: 

Aspirin acetylates COX-2 and selectively 

inhibits COX-1 over COX-2, preventing 

arachidonic acid from being converted to 

prostaglandins and thromboxane A2. Preclinical 

data suggests that inhibiting COX-1 is 

neuroprotective but inhibiting COX-2 promotes the 

influx of leukocytes into the brain, worsening 

tissue damage (57). According to a preliminary 

randomized study, aspirin may influence bipolar 

depression (58). 
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● Minocycline:  

Minocycline, a second-generation 

tetracycline derivative produced synthetically, 

exhibits properties that include anti-inflammatory, 

anti-apoptotic, and antioxidant effects. (59) 

Minocycline influences the transmission of 

glutamate and monoamine neurotransmitters. (60) 

Minocycline plays a role in safeguarding the brain 

by suppressing activated microglia. (61) A meta-

analysis of randomized controlled trials (RCTs) 

was undertaken to comprehensively assess the 

efficacy and safety of adjunctive minocycline in the 

treatment of schizophrenia, bipolar disorder, and 

major depressive disorder (MDD), aiming to better 

understand its clinical effects on these conditions. 

 

● Allopurinol: 

Kraepelin, who initially described the 

connection between manic symptoms, uric acid 

excretion, hyperuricemia, and gout, suggested the 

potential involvement of purines and uric acid in 

mania quite some time ago. (62,63) Observers 

noted that there was a temporary increase in uric 

acid excretion during remission from manic 

episodes. (64) Genetic data indicate a potential 

involvement of purinergic dysfunction in the 

underlying mechanisms of bipolar disorder and 

recurrent major depression. (65,66) In recent times, 

the growing body of evidence supporting the 

efficacy of allopurinol has sparked increased 

interest in investigating the role of the purinergic 

system in bipolar mood disorder. Clinical trials of 

repurposing drugs given in the following table. 

(Table No 3) 

 

Sr 

no 
Drug 

Clinical trial gov 

id 
Phase Dose Description 

1 Aspirin NCT05035316 Phase 

2 

acetylsalicylic 

acid,150 mg, 1 

tablet/day 

This randomized, double-

blinded, placebo-

controlled trial aims to 

explore whether adding 

low-dose aspirin to 

standard drug treatment 

enhances mood 

stabilization in patients 

with BD. The study will 

investigate whether this 

augmentation primarily 

affects antimanic, 

antidepressant, or relapse 

prophylactic outcomes. 

2 Minocycline NCT01514422 Phase 

4 

100 to 300mg 

per day for 8 

weeks 

This study aims to assess 

whether administering 

minocycline to 

individuals with bipolar 

depression over an 8-

week period will lead to 

improvements in their 

depressive symptoms. 

Additionally, participants 

will have the option to 

undergo proton magnetic 

resonance spectroscopy 

(1H-MRS) to measure N-

Acetylaspartate (NAA) 

levels in the brain, which 

are believed to be 

reduced in bipolar 

disorder. 

3 Allopurinol NCT00732251 Phase 

4 

300-600 mg/day 

over a 24-month 

A recent study 

demonstrated the 
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period effectiveness of 

allopurinol in treating 

bipolar mania.  

hypothesis posits that 

incorporating allopurinol 

alongside standard 

medications for bipolar 

disorder will lead to a 

reduction in the 

recurrence of manic 

episodes compared to 

standard medication 

alone. 

Table No 3: Clinical trials of drug repurposed in bipolar disorder. 

 

II. CONCLUSION: 
To optimize research efficiency, 

significant investments of time, energy, and 

expertise are essential for integrating technical 

solutions. Additionally, increased financial backing 

for clinical trials on drug repurposing, along with 

technical assistance, is strongly recommended. 

Adequate financial support for preclinical research 

on drug repurposing is crucial for gathering the 

necessary data for subsequent clinical trials. 

Consequently, drugs that have the potential to treat 

rare diseases are more likely to be applicable in the 

therapeutic treatment of clinical neurological 

diseases. 

Drug repurposing represents an innovative 

strategy aimed at accelerating the drug 

development process for neurological diseases. 

These repurposed medications offer a promising 

pathway for enhancing various pathological 

conditions, particularly neurological disorders. 

Moving forward, it's imperative to delve into the 

molecular mechanisms underlying drug 

repurposing. This is crucial because the targets of 

repurposed drugs for neurological diseases may 

differ from their original targets in treating other 

ailments. By doing so, we can enhance the 

effectiveness and safety of these drugs. 
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