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ABSTRACT: Vaccine hesitancy poses a significant 

barrier to global polio eradication efforts, 

particularly in regions where misinformation, 

cultural beliefs, and mistrust hinder immunization 

programs. This study evaluates the impact of 

vaccine hesitancy on the spread of polio using 

mathematical modeling approaches, focusing on 

Nigeria, where the disease has persisted despite 

extensive vaccination campaigns. A compartmental 

SIRV (Susceptible-Infected-Recovered-Vaccinated) 

model is employed to simulate the dynamics of 

polio transmission, incorporating vaccine uptake 

rates and hesitancy factors. The analysis explores 

how suboptimal vaccination coverage influences 

herd immunity thresholds and increases the risk of 

outbreaks and virus resurgence. Furthermore, the 

model assesses the effectiveness of various 

intervention strategies, such as intensified 

immunization campaigns and targeted 

communication programs aimed at reducing vaccine 

hesitancy. Results highlight the critical role of 

adaptive public health policies and targeted 

vaccination efforts in mitigating the adverse effects 

of vaccine hesitancy on polio transmission. This 

study provides valuable insights to guide 

policymakers in optimizing control strategies to 

achieve polio eradication in Nigeria and similar 

settings. 
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I. INTRODUCTION 
Poliomyelitis, commonly known as polio, 

remains a significant global health challenge despite 

substantial progress in eradication efforts. It is a 

highly infectious viral disease predominantly 

affecting children under five, with the potential to 

cause permanent paralysis and even death. Although 

the widespread use of vaccines has dramatically 

reduced polio cases worldwide, the virus persists in 

specific regions, including Nigeria, due to several 

complex factors [1,2]. One major obstacle to 

eradication is vaccine hesitancy, defined as the 

delay in acceptance or refusal of vaccines despite 

the availability of vaccination services [3]. This 

reluctance arises from a mix of sociocultural beliefs, 

misinformation, safety concerns, and distrust in 

healthcare systems, particularly in areas with a 

history of political instability and health system 

challenges [3,4]. 

Nigeria's history of vaccine hesitancy is 

exacerbated by past controversies regarding the oral 

polio vaccine (OPV), including unfounded rumors 

linking it to infertility, which significantly 

undermined public trust [5]. Efforts to overcome 

these challenges have been met with varying levels 

of success, influenced by regional disparities, 

community engagement, and the effectiveness of 

public health messaging [6]. Understanding the 

impact of vaccine hesitancy on the transmission 

dynamics of polio is thus critical for optimizing 

vaccination campaigns and enhancing eradication 

strategies. 

The drivers of vaccine hesitancy are 

multifaceted, often rooted in cultural, social, and 

economic factors. In Nigeria, misinformation about 

vaccine safety has been prevalent, partly due to low 

literacy levels and limited access to credible health 

information. Religious beliefs also play a role, with 

some communities resisting vaccination on 

theological grounds [7,8]. Moreover, logistical 

challenges such as inadequate vaccine storage 

facilities and transportation further complicate 

vaccination efforts in remote regions [9]. 

Addressing these issues requires an understanding 

of the underlying causes and the development of 

targeted interventions aimed at promoting vaccine 

acceptance and increasing coverage [10,11]. 

Mathematical modeling has become an 

invaluable tool in epidemiology, providing insights 

into disease transmission and the potential outcomes 

of various control measures. In the context of polio, 

models can simulate different scenarios by 

incorporating factors such as vaccination rates, 

waning immunity, birth rates, and seasonal 

variations in transmission [12]. Recent advances in 

modeling have enabled the integration of data on 

vaccine hesitancy to evaluate the effects of 
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suboptimal immunization coverage on polio 

dynamics. These models offer a framework for 

assessing the potential consequences of hesitancy 

and guiding policy decisions aimed at enhancing 

eradication strategies [1,13]. Through simulations, 

policymakers can better understand the thresholds 

needed for herd immunity and design more effective 

interventions to reduce the risk of outbreaks [14]. 

 

II. MATHEMATICAL FORMULATION 
A compartmental model is often used to 

represent polio transmission, dividing the population 

into different groups or "compartments" based on 

disease status: Susceptible (S), Infected (I), 

Recovered (R), and Vaccinated (V). For polio, a 

common model used is the SIRV model, which 

includes the compartments: 

 Susceptible (S): Individuals who are at risk of 

contracting polio because they are not vaccinated or 

have lost immunity. 

 Infected (I): Individuals who are currently 

infected and capable of transmitting the virus. 

 Recovered (R): Individuals who have recovered 

from infection and gained temporary or permanent 

immunity. 

 Vaccinated (V): Individuals who have been 

vaccinated and have developed immunity. 

Incorporating vaccine hesitancy into the model can 

be achieved by introducing a parameter that 

represents the proportion of the population that 

refuses vaccination. This parameter impacts the rate 

at which individuals move from the susceptible to 

the vaccinated compartment, thus affecting the 

overall vaccination coverage. 

The equations governing the dynamics of the SIRV 

model can be written as a system of ordinary 

differential equations (ODEs), incorporating a 

parameter for vaccine hesitancy that affects the rate 

of vaccination. The set of equations that describe the 

dynamics becomes: 

 
dS t 

dt
= ΛN − β

S t I t 

N
 −  1 − h νS t − μS t           (1)  

dI t 

dt
= β

S t I t 

N
− γI t − μI t        2  

dR t 

dt
= γI t − ωR t − μR t        3  

dV t 

dt
=  1 − h νS t − μV t         4  

 

 The term β
S t I t 

N
 represents the rate at which 

susceptible individuals become infected, with β 

being the transmission rate and N  the total 

population. 

 The vaccination term  1 − h νS  indicates the 

rate at which susceptible are vaccinated, where ν is 

the vaccination rate and h is the hesitancy parameter 

(with 0 ≤ h ≤ 1). If h = 0, there is no hesitancy, 

while h > 0 indicates increasing levels of hesitancy. 

 μS t  represents the natural death rate among 

the susceptible individuals. 

 The term γI  represents the recovery rate of 

infected individuals, where γ is the recovery rate. 

 The term μI accounts for the natural death rate 

among infected individuals. 

 ωR represents the rate of waning immunity, 

where ω is the rate at which recovered individuals 

lose immunity and become susceptible again. 

 μR  accounts for the natural death rate among 

recovered individuals. 

 The term μV  represents the natural death rate 

among vaccinated individuals. 

 The total population is given by N = S + I +
R + V , assuming no other sources of population 

change (e.g., migration). 

 

Table 1: Numerical Value of the Parameter 

Parameter Description Value Unit 

Λ Birth rate 0.02(10-30) individuals/day 

𝛽 Transmission rate 0.1-0.5 per day 

𝜈 Vaccination rate 0.001-0.01 per day 

ℎ Vaccine hesitancy parameter 0.1-0.5 None 

𝛾 Recovery rate 0.1-0.2 per day 

𝜔 Waning immunity rate 0.001 -0.05 per day 

𝜇 Natural death rate 0.01 (0.0001) per day 
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The initial data adopted is 

𝑆 0 =  800.000 , 𝐼 0 =   10, 𝑅 0  =
 5.000, 𝑉 0 = 195.000 

 

III. ANALYSIS OF THE MODEL 
3.1 Existence and Uniqueness of Solutions the 

Model of Disease Dynamics 

Theorem: Consider the system of differential 

equations (1) – (4) where S, I, R, V represent the 

susceptible, infected, recovered, and 

vaccinatedpopulations, respectively, and the 

parameters 𝛬, 𝑁, 𝛽, 𝜈, ℎ, µ, 𝛾, 𝜔 are positive 

constants. 

Let 𝑿 =  𝑆, 𝐼, 𝑅, 𝑉 𝑇 . If the initial conditions X(0) 

=  𝑆 0 , 𝐼 0 , 𝑅 0 , 𝑉 0  𝑇  are such that 

𝑆(0), 𝐼(0), 𝑅(0), 𝑉 (0) ≥  0 , then: there exists a 

unique solution 𝑿(𝑡) to the system of ODEs (1) –

(4) in some interval 𝑡 ∈  [0, 𝑇) for some 𝑇 >  0. 

Proof:The System is expressed in vector form as: 

 
𝑑𝑿

𝑑𝑡
 =  𝑭(𝑿),  5  

where 

𝑭 𝑿 =

 
 
 
 
 
 𝛬𝑁 −  𝛽

𝑆𝐼

𝑁
 −   1 −  ℎ 𝜈𝑆 −  µ𝑆

𝛽
𝑆𝐼

𝑁
 −  𝛾𝐼 −  µ𝐼                               

𝛾𝐼 −  𝜔𝑅 −  µ𝑅                              
(1 −  ℎ)𝜈𝑆 −  µ𝑉                           

 
 
 
 
 

 6  

 

 

The right-hand side functions 𝐹1 , 𝐹2, 𝐹3, 𝐹4  are 

composed of rational and polynomial functions of 

𝑆, 𝐼, 𝑅,and 𝑉 . Each function is continuous for all 

non-negative values of these variables.Since all 

functions are continuous, the continuity condition 

is satisfied. 

 

The partial derivatives of the functions becomes, 

 
𝜕𝐹1

𝜕𝑆
= −𝛽

𝐼

𝑁
−  1 − ℎ 𝜈 − µ

𝜕𝐹1

𝜕𝐼
 =  −𝛽 𝑁𝑆  

𝜕𝐹2

𝜕𝐼
= 𝛽

𝑆

𝑁
− 𝛾 − µ                 

𝜕𝐹2

𝜕𝑆
 =  𝛽 𝑁𝐼       

𝜕𝐹3

𝜕𝐼
= 𝛾 − µ                             

𝜕𝐹4

𝜕𝑆
=  1 − ℎ 𝜈                       

𝜕𝐹3

𝜕𝑅
= −𝜔 − µ 

𝜕𝐹4

𝜕𝑉
=  −µ         

 7  

These derivatives are bounded for all 𝑆, 𝐼, 𝑅, 𝑉 ≥  0 because 𝛽, 𝛾, µ, 𝜈, 𝜔are constants. 

Thus, 

∥ 𝑭 𝒙 −  𝑭 𝒚 ∥ ≤  𝐿 ∥ 𝒙 –  𝒚 ∥ for any   𝒙, 𝒚 ∈  𝑅4 8  

𝐿 = 𝑚𝑎𝑥
𝑖∈ 1,4 

𝜕𝐹𝑖

𝜕𝛺
, 𝑖 = 1. .4, 𝛺 =  𝑆, 𝐼, 𝑅, 𝑉  9  

 

𝑿 =  𝑆, 𝐼, 𝑅, 𝑉 𝑇 . If the initial conditions X(0) 

=  𝑆 0 , 𝐼 0 , 𝑅 0 , 𝑉 0  𝑇  are such that 

𝑆(0), 𝐼(0), 𝑅(0), 𝑉 (0) ≥  0, then:  

Therefore, the functions 𝐹1, 𝐹2, 𝐹3, 𝐹4  are 

continuous and satisfy the Lipschitz condition, 

there exists a unique solution 

𝑿 𝑡 =  𝑆 𝑡 , 𝐼 𝑡 , 𝑅 𝑡 , 𝑉 𝑡  𝑇 to the system of 

equations (1) – (4) for 𝑡 in the interval [0, 𝑇)  for 

some 𝑇 >  0 , provided the initial conditions are 

non-negative: 

𝑿 0 =  𝑆 0 𝐼 0 𝑅 0 𝑉  0  𝑇 ≥  0.  10  
This completes the proof.  

3.2 Equilibria 
(i). Disease-Free Equilibrium (DFE): The 

Disease-Free Equilibrium occurs when there is no 

infection in the population, i.e., 𝐼 =  0 . At the 

DFE, Set𝐼 =  0, 𝑑𝐼  𝑑𝑡  =  0 , and solve for 𝑆, 𝑅, 
and 𝑉. Solving the reduced system of equation (1) 

–(4), we have 



 

 

International Journal of Pharmaceutical Research and Applications 

Volume 9, Issue 5 Sep - Oct 2024, pp: 1183-1197 www.ijprajournal.com   ISSN: 2456-4494 

                                       

 

 

 

DOI: 10.35629/4494-090511831197    Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal Page 1186 

(𝑆0, 𝐼0, 𝑅0 , 𝑉0 )  =   
𝛬𝑁

µ +  1 −  ℎ 𝜈
  , 0, 0,

 1 −  ℎ 𝜈𝛬𝑁

µ(µ +  (1 −  ℎ)𝜈)
  11  

 

(ii). Endemic Equilibrium (EE): The Endemic Equilibrium occurs when 𝐼 ≠  0. Therefore, we solve for 

𝑆, 𝐼, 𝑅, and 𝑉at the point where all derivatives are zero. This gives 

 

 𝑆∗, 𝐼∗, 𝑅∗, 𝑉∗ =  
𝑁 𝛾 +  µ 

𝛽
,

𝛬𝑁

 𝛾 +  µ 
−

𝑁  1 −  ℎ 𝜈 +  µ 

𝛽
,

𝛾𝐼∗

𝜔 +  µ
,
 1 −  ℎ 𝜈𝑆∗

µ
 (12) 

 

3.3 Reproduction Number: 

(i). Basic Reproduction Number, R0 

The basic reproduction number, R0, is defined as 

the average number of secondary infections 

produced by a single infected individual in a fully 

susceptible population. It is occurred when 𝑆0 ≤ 𝑆∗, 

where 𝑆0  is the number of susceptible before the 

breakout of the disease and 𝑆∗  is the number of 

susceptible after the breakout of the disease. 

 

Thus 𝑅0 = 𝑆∗ 𝑆0  

𝑅0 =
𝑆∗

𝑆0
=

𝛬𝑁

µ +  1 −  ℎ 𝜈

𝑁 𝛾 +  µ 

𝛽
 =

𝛬𝛽

 µ +  1 −  ℎ 𝜈  𝛾 +  µ 
 

⟹ 𝑅0 =
𝛬𝛽

 µ +  1 −  ℎ 𝜈  𝛾 +  µ 
 13  

(ii). Effective Reproduction Number, 𝑹𝒆:The effective reproduction number, Re, accounts for the current 

level of immunity in the population and is given by: 

𝑅𝑒 = 𝑅0  
𝑆

𝑁
  14  

Where S represents the current number of susceptible individuals. 

 

3.4 Stability Analysis 

To assess the local stability, we need to analyze the Jacobian matrix evaluated at the DFE and EE. 

Jacobian Matrix: The Jacobian matrix 𝐽for the system under consideration is: 

 

𝐽 =

 
 
 
 
 
 
 
 
 
𝜕𝑓1

𝜕𝑆
𝜕𝑓2

𝜕𝑆
𝜕𝑓3

𝜕𝑆
𝜕𝑓4

𝜕𝑆

𝜕𝑓1

𝜕𝐼

𝜕𝑓1

𝜕𝑅

𝜕𝑓1

𝜕𝑉
𝜕𝑓2

𝜕𝐼

𝜕𝑓2

𝜕𝑅

𝜕𝑓2

𝜕𝑉
𝜕𝑓3

𝜕𝐼
𝜕𝑓4

𝜕𝐼

𝜕𝑓3

𝜕𝑅
𝜕𝑓4

𝜕𝑅

𝜕𝑓3

𝜕𝑉
𝜕𝑓4

𝜕𝑉 
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 −𝛽

𝐼

𝑁
−   1 −  ℎ 𝜈 −  µ

𝛽
𝐼

𝑁
0

 1 −  ℎ 𝜈

−𝛽
𝑆

𝑁
0 0

𝛽
𝑆

𝑁
− 𝛾 − µ 0 0

𝛾
0

𝜔 − µ

0
0

−µ 
 
 
 
 
 

 15  

 

where 𝑓𝟏, 𝑓𝟐, 𝑓𝟑,and 𝑓𝟒 are the right-hand sides of the differential equations for 𝑆, 𝐼, 𝑅, and 𝑉, respectively.  

 

Evaluating (15) at DFE (11), the Jacobian matrix becomes: 

𝐽 =

 
 
 
 
 
 
 
−  1 −  ℎ 𝜈 −  µ

0
0

(1 −  ℎ)𝜈

−
𝛬𝛽

µ +  1 −  ℎ 𝜈
0 0

𝛬𝛽

µ +  1 −  ℎ 𝜈
− 𝛾 − µ 0 0

𝛾
0

𝜔 − µ

0
0

−µ 
 
 
 
 
 
 

                           (16) 

The characteristic equation OF (16) is given by: 

𝑑𝑒𝑡 𝐽 − 𝜆𝐼 = 0                                                      (17) 
Solving (17), the eigenvalues areobtained as follows: 
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𝜆1 = − 1 − ℎ 𝜈 − µ, 𝜆2 =
𝛬𝛽

µ +  1 −  ℎ 𝜈
− 𝛾 − µ, 𝜆3 = −𝜔 − µ, 𝜆4 = −𝜇                 (18) 

From 

𝜆2 =
𝛬𝛽

µ +  1 − ℎ 𝜈
− 𝛾 − 𝜇 =  𝛾 + 𝜇  

𝛬𝛽

µ +  1 − ℎ 𝜈 𝛾 + 𝜇 
− 1 =  𝛾 + 𝜇  𝑅0 − 1  

Since all the parameters are positive and 0 ≤ ℎ ≤ 1 and  

𝜆2 =  𝛾 + 𝜇  𝑅0 − 1                                                                          (19) 
 

Therefore, all eigenvalues will have negative real 

partsif 𝑅0 < 1. 

Hence, the DFE is locally stable if 𝑅0 < 1 . If 

𝑅0 >  1, the DFE is unstable since 𝜆2 > 0.  

Thus, 𝑅0  acts as the threshold parameter for the 

stability of the disease-free equilibrium. 

 

3.5 Stability of the endemic equilibrium 

To determine the stability of the endemic 

equilibrium, we again use the Jacobian matrix 

evaluated at the endemic equilibrium.Evaluating 

(15) at (12) 

 

𝐽 =

 
 
 
 
 
 
 −

𝛬𝛽

 𝛾 +  µ 
−   1 −  ℎ 𝜈 −  µ − 𝜆

𝛬𝛽

 𝛾 +  µ 

0
 1 −  ℎ 𝜈

− 𝛾 +  µ 0 0
0 − 𝜆 0 0

𝛾
0

−𝜔 − µ − 𝜆
0

0
−µ − 𝜆

 
 
 
 
 
 
 

 20  

which imply 

 −
𝛬𝛽

 𝛾 +  µ 
−   1 −  ℎ 𝜈 −  µ − 𝜆  

−𝜆 0 0
𝛾 −𝜔 − µ − 𝜆 0
0 0 −µ − 𝜆

 

+  𝛾 +  µ   

𝛬𝛽

 𝛾 +  µ 
0 0

0 −𝜔 − µ − 𝜆 0

 1 −  ℎ 𝜈 0 −µ − 𝜆

   

That is 

 −𝜆  −
𝛬𝛽

 𝛾 +  µ 
−   1 −  ℎ 𝜈 −  µ − 𝜆 +  𝛾 +  µ  

𝛬𝛽

 𝛾 +  µ 
   −𝜔 − µ − 𝜆  −µ − 𝜆  

 −𝜆  −
𝛬𝛽

 𝛾 +  µ 
−   1 −  ℎ 𝜈 −  µ − 𝜆 +  𝛾 +  µ  

𝛬𝛽

 𝛾 +  µ 
  = 0 

Or 

 −𝜔 − µ − 𝜆  −µ − 𝜆 = 0 
From 

𝜆2 + 𝜆  
𝛬𝛽

 𝛾 +  µ 
+   1 −  ℎ 𝜈 +  µ + 𝛬𝛽 = 0 

𝜆 =
− 

𝛬𝛽

 𝛾  + µ 
+   1 −  ℎ 𝜈 +  µ ±   

𝛬𝛽

 𝛾  + µ 
+  1 −  ℎ 𝜈 +  µ 

2

− 4𝛬𝛽

2
 

 

From where 

𝜆1,2 =
− 

𝛬𝛽

 𝛾  + µ 
+  1 −  ℎ 𝜈 +  µ ±   

𝛬𝛽

 𝛾  + µ 
+  1 −  ℎ 𝜈 +  µ 

2

− 4𝛬𝛽

2
 

Therefore, 

𝜆1 =
− 

𝛬𝛽

 𝛾  + µ 
+  1 −  ℎ 𝜈 +  µ +   

𝛬𝛽

 𝛾  + µ 
+  1 −  ℎ 𝜈 +  µ 

2

− 4𝛬𝛽

2
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𝜆2 =
− 

𝛬𝛽

 𝛾  + µ 
+  1 −  ℎ 𝜈 +  µ −   

𝛬𝛽

 𝛾  + µ 
+  1 −  ℎ 𝜈 +  µ 

2

− 4𝛬𝛽

2
 

𝜆3 = −𝜔 − µ, 𝜆4 = −µ 

This imply that all eigenvalues have negative real parts, the endemic equilibrium is locally stable.  

 

3.6 Global Stability of the System 
Theorem: Global Stability of the Endemic 

Equilibrium for the SIRV model described by the 

system of equations (1) – (4), for any initial 

conditions (𝑆(0), 𝐼(0), 𝑅(0), 𝑉 (0)) as 𝑡 →  ∞,  the 

endemic equilibrium (12) is globally 

asymptotically stable. 

 

Proof: Let a Lyapunov function be: 

𝐹 𝑆, 𝐼, 𝑅, 𝑉  =  𝑎1  𝑆 −  𝑆∗  − 𝑆∗ 𝑙𝑛
𝑆

𝑆∗
 + 𝑎2  𝐼 −  𝐼∗  −  𝐼∗ 𝑙𝑛

𝐼

𝐼∗
 

                              +𝑎3  𝑅 −  𝑅∗  −  𝑅∗ 𝑙𝑛
𝑅

𝑅∗
 + 𝑎4  𝑉 − 𝑉∗ − 𝑉∗ 𝑙𝑛

𝑉∗

𝑉
 

 21  

where 𝑎1 , 𝑎2 , 𝑎3, and 𝑎4 are positive constants. 

This function is non-negative and vanishes only at the endemic equilibrium 

(𝑆∗, 𝐼∗, 𝑅∗, 𝑉∗), since the expressions 𝑥 −  𝑥∗  −  𝑥∗ 𝑙𝑛
𝑥

𝑥∗are non-negative for all 𝑥and 

equal zero only when 𝑥 =  𝑥∗. 

The time derivative of 𝐹along the trajectories of the system is given by: 
𝑑𝐹

𝑑𝑡
= 𝑎1  1 −

𝑆

𝑆∗
 
𝑑𝑠

𝑑𝑡
+ 𝑎2  1 −

𝐼

𝐼∗
 
𝑑𝐼

𝑑𝑡
+ 𝑎3  1 −

𝑅

𝑅∗
 
𝑑𝑅

𝑑𝑡
+ 𝑎4  1 −

𝑉

𝑉∗
 
𝑑𝑉

𝑑𝑡
.             22  

Substitute the right-hand sides of the equations (1) – (4): 

1. For the 𝑆 −component: 

𝑑𝐹

𝑑𝑡
= 𝑎1  1 −

𝑆

𝑆∗
  𝛬𝑁 − 𝛽

𝑆 𝑡 𝐼 𝑡 

𝑁
−  1 − ℎ 𝜈𝑆 𝑡 − 𝜇𝑆 𝑡  

+𝑎2  1 −
𝐼

𝐼∗
  𝛽

𝑆 𝑡 𝐼 𝑡 

𝑁
− 𝛾𝐼 𝑡 − 𝜇𝐼 𝑡  

+𝑎3  1 −
𝑅

𝑅∗
  𝛾𝐼 𝑡 − 𝜔𝑅 𝑡 − 𝜇𝑅 𝑡  + 𝑎4  1 −

𝑉

𝑉∗
  (1 − ℎ)𝜈𝑆 𝑡 − 𝜇𝑉 𝑡  

 23  

At the endemic equilibrium point, (23) becomes 
𝑑𝐹

𝑑𝑡
= 0 

The function is designed to decrease along trajectories of the system, except at the endemic equilibrium, where 

it equals zero. This ensures that: 
𝑑𝐹

𝑑𝑡
<  0 for all 𝑆, 𝐼, 𝑅, 𝑉  ≠   𝑆∗, 𝐼∗, 𝑅∗, 𝑉∗ .  

Hence the endemic equilibrium point is global asymptotic stable. 

 

3.6 Sensitivity Analysis 

To determine the sensitivity indices of each parameter on the quantities 𝑅0, 𝑆0, 𝐼0, 𝑅0 , 𝑉0 , 𝑆∗, 𝐼∗, 𝑅∗, 𝑉∗, we use 

the concept of ―normalized sensitivity indices‖. The sensitivity index of a parameter p with respect to a quantity 

Q is given by: 

Sensitivity Index =
𝜕𝑄

𝜕𝑝
·
𝑝

𝑄
 

We will compute the sensitivity indices for each parameter (𝛬, 𝑁, 𝛽, ℎ, 𝜈, µ, 𝛾, 𝜔)  on the quantities 

𝑅0 , 𝑆0, 𝐼0 , 𝑅0, 𝑉0, 𝑆∗, 𝐼∗, 𝑅∗, 𝑉∗. 

1. Sensitivity Indices for 𝑹0 

𝑅0𝛬
= 1 𝑅0𝛽

= 1 𝑅0ℎ
= −

 1 −  ℎ 𝜈

µ +   1 −  ℎ 𝜈
 𝑅0𝛾

= −
𝛾

𝛾 +  µ
 



 

 

International Journal of Pharmaceutical Research and Applications 

Volume 9, Issue 5 Sep - Oct 2024, pp: 1183-1197 www.ijprajournal.com   ISSN: 2456-4494 

                                       

 

 

 

DOI: 10.35629/4494-090511831197    Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal Page 1189 

𝑅0𝜈
=  −

 1 −  ℎ 𝜈

µ +   1 −  ℎ 𝜈
 𝑅0µ

= −   
𝛾 + µ +  1 − ℎ 𝜈

𝛾 +  µ
·

µ

µ +  1 − ℎ 𝜈
  

2. Sensitivity Indices for 𝑆0 

𝑆𝛬
0 = 1 𝑆𝑁

0 = 1 𝑆ℎ
0 = −

 1 −  ℎ 𝜈

µ +   1 −  ℎ 𝜈
 𝑆𝜈

0 = −
 1 −  ℎ 𝜈

µ +   1 −  ℎ 𝜈
 

𝑆µ
0 = −  

µ

µ +  1 − ℎ 𝜈
 

3. Sensitivity Indices for 𝑉0 

𝑉𝛬
0 = 1 𝑉𝑁

0 = 1 𝑉ℎ
0 = −

 1 −  ℎ 𝜈

µ +  1 − ℎ 𝜈
 𝑉𝜈

0 =  
𝜈

µ +   1 −  ℎ 𝜈
 

𝑉µ
0 = −  

µ

µ +  1 − ℎ 𝜈
 

 

4. Sensitivity Indices for 𝑆∗ 

𝑆𝑁
∗ = 1 𝑆𝛽

∗ = −1 𝑆µ
∗ = −  

µ

𝛾 +  µ
 𝑆𝛾

∗ =  
µ

𝛾 +  µ
 

5. Sensitivity Indices for 𝐼∗ 

𝐼𝑁
∗ =

𝑁 ·  𝛬𝛽 −  𝛾 + µ   1 − ℎ 𝜈 + µ  

𝛬𝑁𝛽 − 𝑁 𝛾 + µ ·   1 −  ℎ 𝜈 +  µ 
 𝐼𝛽

∗ = −
𝛽

𝛬𝛽 −   𝛾 +  µ   1 −  ℎ 𝜈 +  µ 
 

𝑆𝛽
𝑅∗

 =
𝑁 𝛾 +  µ  µ +   1 −  ℎ 𝜈 

𝛽  𝛬𝑁 −
𝑁 𝛾+µ  µ+ 1−ℎ 𝜈 

𝛽
 

 𝐼ℎ
∗ = −  

 1 −  ℎ 𝜈

µ +  1 −  ℎ 𝜈
 𝐼𝛬

∗ = 1 𝑆𝛾
𝑅∗

= 1 

6. Sensitivity Indices for 𝑅∗ 

𝑆µ
𝑅∗

= µ

 − 𝛾 + µ −
𝛬 𝛽 𝛾+µ +𝑁 µ+𝜔  

 µ+𝜔  𝛾+µ 
+  µ +  1 − ℎ 𝜈   𝛾 − 𝜔 +

𝑁

𝛽
  

𝛬𝛽 −  𝛾 + µ  µ +  1 − ℎ 𝜈 
 

 

𝑆𝜈
𝑅∗

= −𝑁𝜈(1 − ℎ)(𝛾 + µ)/(𝛽  𝛬𝑁 −
𝑁 𝛾 + µ  µ +  1 − ℎ 𝜈 

𝛽
  

SΛ
R∗

=
βΛ

βΛ −  γ + µ  µ +  1 − h ν 
, Sω

R∗
= −

ω

µ +  ω
 

Sh
R∗

=
Nhν γ +  µ 

β  ΛN −
N γ+µ  µ+ 1−h ν 

β
 
 

Sensitivity Indices for V∗ 

Sβ
V∗

= −1, Sγ
V∗

=
γ

γ +  µ
, Sµ

V∗
=

γ

 γ + µ 
, Sh

V∗
= −

h

1 −  h
, Sν

V∗
= 1 

 

Table 2: Sensitivity Index 

Parameter  𝐑𝟎 𝐒𝟎 𝐕𝟎 𝐒∗ 𝐈∗ 𝐑∗ 𝐕∗ 

Λ = 0.020 1.000 1.000 1.000 1.000 1.000 2.497 0.000 

β = 0.100 1.000 0.000 0.000 -1.000 -124.844 1.000 -1.000 

ν = 0.001 -0.083 -0.083 0.092 0.000 0.000 -0.124 1.000 

h = 0.100 -0.083 -0.083 -0.083 0.000 -0.083 0.014 -0.111 

γ = 0.100 -0.909 0.000 0.000 0.091 0.000 0.000 0.909 

ω = 0.001 0.000 0.000 0.000  0.000 0.000 -0.091 0.000 

μ = 0.010 -0.925 -0.925 -0.917 -0.091 0.000 -90912.721 0.909 
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IV. NUMERICAL SOLUTION 
In other to access the numerical simulation 

of model under consideration, a numerical method 

RKF45 method, short for Runge-Kutta-Fehlberg 

4th and 5th order method is used. This adaptive 

method combines the advantages of both the 4th-

order and 5th-order Runge-Kutta methods, 

allowing it to provide accurate solutions while 

dynamically adjusting the step size based on the 

estimated error at each step. By estimating the 

solution using both the 4th and 5th orders, RKF45 

can effectively determine the most suitable step 

size for the next iteration, thus balancing 

computational efficiency and accuracy. This 

adaptability makes it particularly valuable for 

problems where the solution exhibits rapid changes 

or where precise results are crucial. Consequently, 

RKF45 is implemented using Maple inbuild ode 

solver, Ascher and Petzold (1998).  

The `dsolve` command, utilizing the 

`numeric` option or `type=numeric`, facilitates the 

computation of numerical solutions for ordinary 

differential equations (ODEs) or systems of ODEs 

subject to initial value problems (IVPs)Shampine 

and Corless (2000). Furthermore, the integration of 

the `odeplot` function enables the visualization of 

the resulting graphs, providing a comprehensive 

representation of the dynamics inherent in the 

mathematical model of polio transmission. This 

approach ensures a robust and systematic 

exploration of the ODEs, contributing to a deeper 

understanding of the underlying epidemiological 

processes. 

 

V. RESULT AND DISCUSSION 
5.1 Numerical Results 

In this model, the population dynamics are 

governed by the flow of individuals between four 

compartments: susceptible ( S ), infected ( I ), 

recovered (R), and vaccinated (V).  

This model effectively captures the 

dynamics of polio transmission and control within 

a population. Population dynamics depicted in Fig. 

1 shows the dynamics between the subclasses in 

the system. It could be observed that withing the 

first 2-years, fluctuations in subclasses persist, 

which suggest a shifts in disease prevalence, 

immunity levels, and the effectiveness of 

vaccination efforts over time. The peak in S, I, R 

profiles (Fig. 1) indicate periods of increased 

infection risk if the susceptible population grows as 

the vaccinated population declines due to waning 

immunity or vaccine hesitancy. An increase in 

recovered individuals signals an outbreak phase 

that has led to natural immunity. 

Birth rate (Λ) plays a fundamental role in 

the dynamics of infectious disease models by 

continuously adding new individuals to the 

susceptible compartment, thus impacting the 

overall population structure. A steady influx of new, 

unexposed individuals increases the pool of 

susceptible individuals as shown in Fig. 2, 

providing a continuous source of potential hosts for 

the disease. This influx is particularly influential in 

the persistence of polio diseases (Fig. 3), the 

disease has an ongoing opportunity to spread, as 

the susceptible population remain high even in the 

presence of other control strategies. Which also 

imply increase in Vaccinated class as more 

individuals is required to be vaccinated, Fig. 4. An 

increase in birth rate, therefore, lead to higher 

infection rates and potentially an increased basic 

reproduction number (R0), as it sustains a larger 

proportion of individuals who are at risk. Balancing 

birth rates with effective vaccination coverage is 

essential to controlling long-term disease 

dynamics.In Fig. 5, we displayed the effect of 

transmission rate on infected class. In this model, a 

high transmission rate indicates that infected 

individuals are more easily transmit the disease to 

susceptible individuals, thereby accelerating the 

spread of infection. A peak in the profile indicates 

a higher transmission rate could result into 

epidemics during the disease outbreak. This 

heightened transmission raises the overall infection 

rate within the population, increasing the likelihood 

that a single infection will lead to secondary cases. 

Reducing the transmission rate, whether through 

interventions like vaccination, social distancing, or 

hygiene measures, can thus significantly impact the 

overall progression of the disease. A lower 

βeffectively reduces the basic reproduction number 

(R0), making it harder for the infection to persist in 

the population and aiding in control efforts. 

The vaccination rate (ν) determines the 

rate at which susceptible individuals are transferred 

into the vaccinated compartment Fig. 6, effectively 

reducing the number of individuals at risk of 

infection. High vaccination rates are pivotal in 

disease control as they reduce the susceptible 

population, thereby lowering the potential for 

disease spread.In polio models, increasing νdirectly 

helps to prevent new infections, as more 

individuals are rendered immune through 

vaccination rather than exposure to the infection. 

This process also contributes to achieving herd 

immunity, as it lowers the probability that an 



 

 

International Journal of Pharmaceutical Research and Applications 

Volume 9, Issue 5 Sep - Oct 2024, pp: 1183-1197 www.ijprajournal.com   ISSN: 2456-4494 

                                       

 

 

 

DOI: 10.35629/4494-090511831197    Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal Page 1191 

infected person will encounter a susceptible 

individual. High vaccination rates are essential to 

achieving eradication goals for polio, as they 

prevent new infections from sustaining 

transmission cycles. Ensuring consistent and high 

vaccination coverage can counterbalance high birth 

rates or other factors that increase susceptibility 

within a population. Vaccine hesitancy (h) 

represents the proportion of individuals who, 

despite being eligible, avoid or delay vaccination. 

This parameter has gained attention due to its 

influence on disease dynamics, especially in the 

context of achieving herd immunity. When his high, 

the susceptible population remains larger than 

expected under an ideal vaccination program Fig. 7, 

creating a wider window for potential outbreaks. 

For polio, high vaccine hesitancy can jeopardize 

eradication efforts by maintaining a susceptible 

population large enough to sustain transmission. 

Vaccine hesitancy also indirectly impacts other 

model parameters, as it interacts with vaccination 

rates, leading to less effective control even with 

high vaccination availability Fig. 8. Addressing 

vaccine hesitancy through public health education, 

trust-building, and addressing misinformation is 

essential to achieving herd immunity and ensuring 

effective disease control. 

In polio dynamics, a high recovery rate 

reduces the duration of infectiousness, effectively 

decreasing the likelihood of transmission to others 

Fig. 9. This shorter infectious period helps to lower 

the infection’s spread by reducing the number of 

secondary infections an infected person can 

generate. In this model, increasing γlower the basic 

reproduction number, potentially reducing the 

persistence of infection within a population. 

Furthermore, if immunity post recovery is long-

lasting or permanent, a high recovery rate can 

substantially aid control efforts by maintaining a 

higher proportion of immune individuals in the 

population. Waning immunity can undermine 

control efforts by continuously replenishing the 

susceptible compartment, particularly in settings 

where booster vaccinations or ongoing exposure 

are not maintained. A higher ω rate implies that 

individuals lose immunity more quickly, 

potentially leading to reduction in recovery class 

and resulted in periodic outbreaks as immunity 

levels wane across the population. This 

phenomenon highlights the importance of 

understanding immunity duration and considering 

booster doses or natural immunity through 

exposure to maintain long-term population 

protection.  

 

 
Fig. 1: Population Dynamics of Polio 

 
Fig. 2: Impact of Birth/recruitment rate on 

susceptible class 

 
Fig. 3: Impact of Birth/recruitment rate on infected 

 
Fig. 4: Impact of Birth/recruitment rate on 

vaccinated class 
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class 

 
Fig. 5: Effect oftransmission rate on infected class 

 
Fig. 6: Contribution of vaccination rate on 

vaccinated class 

 
Fig. 7: Impact ofVaccine hesitancy parameter on 

susceptible class 

 
Fig. 8: Impact ofVaccine hesitancy parameter on 

vaccinated class 

 
Fig. 9: Effect of Recovery rate on infected class 

 
Fig. 10: Influence of wanning immunity rate on 

recovery class 
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5.2 Sensitivity Analysis 

The sensitivity of parameters on the basic 

reproduction number R0 provides valuable insights 

into how changes in each parameter affect the 

potential for disease transmission within a 

population.  

 

5.2.1 Sensitivity index of 𝐑𝟎 

The sensitivity index of R0 with respect to 

the birth rate ( Λ ) is positive and equal to 1, 

indicating a direct, strong relationship where an 

increase in birth rate raises the susceptible 

population, thus enhancing transmission potential. 

This underscores the importance of birth rate 

management in disease control. Similarly, the 

sensitivity of R0  to the transmission rate ( β ) is 

positive and also equal to 1, showing that a higher 

transmission rate allows infected individuals to 

infect more susceptible, increasing R0 . This 

emphasizes the need for interventions to reduce 

transmission. The sensitivity index for vaccination 

rate ( ν ) is negative (-0.083), suggesting that 

increased vaccination reduces R0  slightly by 

controlling the susceptible population, while 

vaccine hesitancy (h) also has a negative impact (-

0.083), as it limits vaccination uptake, maintaining 

a larger susceptible population. Recovery rate (γ) 

shows a strong inverse effect on R0 with a 

sensitivity of -0.909, as quicker recovery reduces 

transmission time, highlighting the importance of 

effective healthcare. The waning immunity rate (ω) 

shows no sensitivity (0), suggesting minimal 

impact on R0 at low rates. Lastly, the natural death 

rate (µ) has a strong negative sensitivity of -0.925, 

as increased mortality decreases the susceptible and 

infected compartments, lowering R0 , though this 

raises population health concerns. This reveals that 

the parameters most critical to controlling R0  are 

the recovery rate and the natural death rate, which 

significantly reduce transmission potential when 

increased. Conversely, both the birth and 

transmission rates are positively correlated with R0, 

emphasizing the need for effective public health 

interventions that target these areas to control 

disease spread effectively.  

 

5.2.2 Sensitivity of the susceptible population at 

disease-free equilibrium (DFE) 

The sensitivity of the susceptible 

population at disease-free equilibrium (DFE), S0, 

to the birth rate (Λ) is positive and equal to 1, 

showing a direct relationship where increased 

births elevate the susceptible population, creating a 

reservoir for potential disease spread. This 

underscores the role of managing birth rates in 

controlling transmission. The sensitivity to the 

transmission rate (β) is 0, meaning transmission 

dynamics affect spread but not the baseline count 

of susceptible at DFE, highlighting that lowering 

transmission primarily affects infection dynamics 

rather than susceptibility. 

The sensitivity index to vaccination rate (ν) 

is slightly negative, showing that vaccination 

effectively reduces susceptibility, even if the 

impact is modest. As vaccination increases, fewer 

remain susceptible, supporting public health efforts. 

Vaccine hesitancy (h) similarly shows negative 

sensitivity, as increased hesitancy enlarges the 

susceptible group, indicating a need for strategies 

to improve vaccine acceptance. Lastly, the natural 

death rate (µ) has a strongly negative sensitivity, 

suggesting that higher mortality reduces 

susceptibility by decreasing the overall population, 

though raising ethical concerns around long-term 

public health stability. This analysis reveals that the 

birth rate has the most substantial positive impact 

on the initial susceptible population at DFE, while 

the natural death rate significantly reduces the 

number of susceptible individuals. Conversely, the 

vaccination rate and vaccine hesitancy slightly 

influence susceptibility, emphasizing the 

importance of vaccination programs and addressing 

vaccine hesitancy to maintain lower levels of 

susceptibility within the population. Understanding 

these sensitivities is crucial for devising effective 

public health strategies to control infectious 

diseases. 

 

5.2.3Sensitivity of vaccination levels ( V0 ) at 

Disease-FreeEquilibrium (DFE) 

The sensitivity of vaccination levels (V0) 

at Disease-Free Equilibrium (DFE) to various 

parameters provides insights into how these factors 

influence vaccine uptake in a population. A 

positive sensitivity to birth rate implies that higher 

birth rates increase the pool eligible for vaccination, 

underscoring the need to consider population 

growth in maintaining effective coverage. While 

the transmission rate sensitivity is zero, suggesting 

it does not directly affect vaccination at DFE, 

reducing transmission remains key for controlling 

disease spread. A positive sensitivity to the 

vaccination rate itself suggests that even slight 

increases in vaccination efforts can significantly 

elevate immunity levels, supporting prevention. 

Conversely, vaccine hesitancy has a negative 

sensitivity, meaning higher hesitancy reduces 

vaccination, underscoring the importance of 
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education and outreach to address it. The natural 

death rate’s negative sensitivity indicates that 

higher mortality can reduce the pool for 

vaccination, impacting coverage. Overall, birth rate 

and vaccination rate positively impact vaccination 

levels, while vaccine hesitancy and natural death 

rate reduce it. These findings highlight the 

importance of targeted strategies to encourage 

vaccination, address hesitancy, and consider 

population dynamics to enhance vaccine coverage 

and control disease effectively. 

 

5.2.4 Sensitivity of the susceptible population (S∗) 

at EndemicEquilibrium 

The sensitivity of the susceptible 

population (S∗) at Endemic Equilibrium to various 

parameters reveals key influences on its size. The 

birth rate has a positive sensitivity, indicating that 

an increase in birth rate directly enlarges the 

susceptible pool, thereby sustaining potential 

transmission. Public health interventions should 

consider birth rates to manage new susceptibles, 

especially for vaccination strategies. In contrast, 

the transmission rate has a negative sensitivity, as a 

higher rate reduces the susceptible population by 

accelerating infections, underscoring the 

importance of controlling transmission to stabilize 

the susceptible pool. The recovery rate has a 

modest positive impact, meaning faster recovery 

returns individuals to susceptibility, slightly 

increasing the pool. On the other hand, the natural 

death rate reduces the susceptible population, as 

higher mortality removes individuals from this 

group, affecting disease spread. Overall, birth and 

transmission rates are the most significant factors 

influencing the susceptible population size, while 

recovery and death rates have smaller impacts, and 

vaccination rate and hesitancy show minimal 

effects on susceptibles at this stage. Understanding 

these sensitivities is essential for designing public 

health strategies to manage susceptibility and 

control disease in endemic settings. 

 

5.2.5 Sensitivity of the infected population (I∗) at 

EndemicEquilibrium 

The sensitivity of the infected population 

(I∗) at Endemic Equilibrium to various parameters 

offers essential insights into infection dynamics. 

With a sensitivity index of 1.000, the birth rate 

shows a direct relationship with the infected 

population, indicating that higher birth rates 

increase infections by introducing more susceptible. 

This risks among new cohorts. Conversely, the 

transmission rate exhibits an extremely high 

negative sensitivity, meaning that even slight 

increases in transmission control measures (e.g., 

hygiene, distancing, vaccination) significantly 

reduce infections. This parameter is thus critical for 

epidemic control as reducing transmission rates can 

dramatically lower infection levels. The sensitivity 

of vaccine hesitancy, though negative, suggests that 

increased hesitancy marginally raises infections, as 

fewer individuals are vaccinated, leaving a larger 

susceptible pool. Addressing hesitancy through 

community engagement is crucial to boost vaccine 

uptake and lower infection rates. Overall, birth and 

transmission rates are the primary influences on 

endemic infection levels, with transmission control 

being pivotal for reducing infection burdens. 

Vaccine hesitancy remains a significant factor, 

emphasizing the need for public health strategies to 

enhance vaccination coverage. 

 

5.2.6 Sensitivity analysis of the recovery 

population (R∗) atEndemic Equilibrium 

The sensitivity analysis of the recovery 

population ( R∗ ) at Endemic Equilibrium reveals 

how parameter changes impact the dynamics of 

recovered individuals. A strong positive sensitivity 

index (2.497) for the birth rate suggests that as 

birth rates increase, so does the recovery 

population, as newersusceptible enter, potentially 

get infected, and eventually recover. This 

underscores the importance of adequate health 

infrastructure and vaccination efforts for incoming 

cohorts to bolster recovery. Similarly, the 

transmission rate’s sensitivity (1.000) shows that 

higher transmission results in more infected 

individuals who recover, stressing the value of 

transmission control to maintain manageable 

infection and recovery rates. 

Conversely, the vaccination rate’s 

negative sensitivity suggests that increasing 

vaccination reduces recovery, as fewer infections 

occur in the first place. This highlights 

vaccination’s preventive focus over recovery-

driven disease management. Vaccine hesitancy has 

a minimal positive sensitivity, indicating little 

immediate impact on recovery but suggesting long-

term gains with improved vaccine uptake. The 

negative sensitivity of the waning immunity rate 

implies that higher rates of lost immunity reduce 

the recovered population, reinforcing the need for 

durable immunity strategies, such as boosters. 

Finally, the very high negative sensitivity of the 

natural death rate underscores how elevated 

mortality reduces the recovery pool, underscoring 

the importance of addressing mortality for 
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sustained recovery rates. Overall, this analysis 

emphasizes that comprehensive strategies 

integrating infection control, vaccination, and 

mortality reduction are essential for supporting 

recovery and maintaining population health. 

 

5.2.7 Sensitivity analysis of the vaccination 

population (V∗) 

The sensitivity analysis of the vaccination 

population ( V∗ ) at endemic equilibrium reveals 

how various parameters impact vaccination uptake, 

showing that transmission, vaccination efforts, 

recovery rates, and community perceptions shape 

immunization dynamics. A negative sensitivity 

index of -1.000 for the transmission rate indicates 

that higher transmission rates reduce vaccination 

uptake, as resources may shift toward outbreak 

control, underscoring the need for transmission 

management to support immunization. In contrast, 

a positive sensitivity of 1.000 for the vaccination 

rate shows that enhancing vaccination efforts 

directly increases coverage, affirming the critical 

role of well-resourced campaigns in public health. 

Vaccine hesitancy, with a modest negative 

sensitivity, slightly decreases vaccination 

rates, indicating that targeted education and 

outreach can improve uptake. Additionally, a 

positive sensitivity (0.909) for the recovery rate 

suggests that as more people recover, vaccine 

uptake increases, possibly due to greater awareness 

of disease risks, highlighting an indirect benefit of 

recovery support on vaccination. Similarly, the 

same positive index for the natural death rate 

suggests that heightened mortality may prompt 

more aggressive vaccination campaigns, 

positioning immunization as a response to 

increased mortality threats. Altogether, controlling 

transmission, ensuring robust vaccination 

initiatives, supporting recovery, and engaging the 

community are essential to enhance vaccination 

rates and strengthen population health, 

demonstrating the intricate balance between disease 

dynamics and public health strategies. 

 

5.2.8 Vaccine Hesitancy 

Vaccine hesitancy profoundly affects 

polio spread by altering vaccination coverage 

levels, which, in turn, influence the dynamics of 

immunity and susceptibility within a population. In 

the absence of hesitancy (h = 0), vaccination rates 

are maximized, rapidly building immunity across 

the population and minimizing the number of 

susceptible individuals. This high coverage 

suppresses polio transmission efficiently, leading to 

a lower peak in infections and a swift decline in 

cases. Such conditions make it easier to approach 

or sustain herd immunity, thereby protecting those 

who cannot be vaccinated and reducing the risk of 

an outbreak. 

Conversely, with moderate hesitancy 

(h = 0.5), fewer individuals receive the vaccine, 

leaving more people susceptible. This results in a 

higher infection peak, as the reduced immunity 

level cannot adequately curb polio spread. The 

decline in cases slows, extending the transmission 

period and increasing the likelihood of recurrent 

outbreaks. In scenarios of high hesitancy (h = 0.9), 

vaccination coverage drops significantly, leading to 

a sustained outbreak with a much higher peak in 

infections. The large pool of susceptible individuals 

perpetuates transmission, emphasizing the direct 

role of high vaccination coverage in controlling 

polio. These findings underscore that even 

moderate hesitancy can compromise herd immunity, 

with increased hesitancy posing a severe risk of 

persistent and intensified polio transmission. 

 

VI. CONCLUSION 
The research on evaluating vaccine 

hesitancy and its impact on polio transmission 

using mathematical models underscores the critical 

influence of vaccination coverage on disease 

dynamics and public health outcomes. Through a 

detailed sensitivity analysis of various vaccination 

hesitancy scenarios—from no hesitancy to high 

hesitancy—this study demonstrates how reluctance 

to vaccinate directly correlates with increased polio 

transmission rates, prolonged outbreaks, and 

challenges in achieving herd immunity. The model 

reveals that in the absence of hesitancy, robust 

vaccination campaigns significantly limit the 

number of infections, rapidly establishing a high 

level of immunity across the population. This 

outcome aligns with global public health efforts 

that emphasize the importance of maintaining high 

vaccination rates to keep diseases like polio at bay 

and protect vulnerable groups. 

In moderate hesitancy scenarios, the 

model shows a less favorable outcome, with 

decreased vaccine uptake leaving more individuals 

susceptible to infection. This condition results in a 

higher peak of infections and a slower decline in 

case numbers, leading to extended transmission 

periods and heightening the likelihood of recurrent 

outbreaks. Moderate hesitancy, often stemming 

from concerns about vaccine safety, 

misinformation, or cultural beliefs, illustrates the 

need for targeted interventions that address specific 
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causes of reluctance. Effective public health 

campaigns and education initiatives become 

essential in this context, as they can help reduce 

hesitancy by building public trust in vaccination. 

The model highlights that even a moderate drop in 

vaccine uptake can disrupt the progress toward 

eradicating polio, illustrating the narrow margin by 

which vaccination success can be maintained in 

susceptible communities. 

High vaccine hesitancy (with values such 

as h=0.9) is shown in the model to be especially 

concerning, leading to substantial decreases in 

vaccination coverage and a dramatic increase in 

polio cases. Under these conditions, the number of 

susceptible individuals remains high, creating a 

fertile environment for sustained transmission and 

increasing the risk of severe outbreaks. Such 

findings underscore those high levels of hesitancy 

can nullify the benefits of vaccination, placing 

entire communities at risk and undermining years 

of public health progress. Additionally, the model 

emphasizes the compounding effects of vaccine 

hesitancy, as each hesitancy level creates a 

proportionate risk, with high hesitancy approaching 

near-endemic conditions. This scenario is 

particularly relevant in regions where trust in health 

institutions is fragile or where misinformation 

regarding vaccines proliferates. 

The study’s mathematical model serves as 

a valuable tool for understanding how even small 

shifts in vaccination behavior can dramatically 

influence disease transmission. It illustrates the 

intricate balance between vaccination uptake and 

infection rates, highlighting that maintaining high 

vaccine coverage is not merely a public health 

target but a necessity for sustaining polio control. 

Through sensitivity analyses of the birth rate, 

transmission rate, recovery rate, and vaccine 

hesitancy, the model further demonstrates that 

vaccine hesitancy can impede efforts to control 

transmission effectively, leaving populations 

vulnerable to resurgence and severe outbreaks. 

From the above discussions, the following 

deduction were made: 

 Higher birth rates can increase the number of 

susceptible individuals, maintaining a population at 

risk for infection.  

 Can sustain disease spread if not 

counterbalanced by high vaccination rates. 

 High β accelerates infection spread, increasing 

disease prevalence.  

 Reducing β is crucial for lowering the basic 

reproduction number (R0). 

 High ν lowers the susceptible pool, reducing 

potential new infections.  

 Higher h increases the susceptible population, 

sustaining potential transmission.  

 Higher γ reduces the infectious period, leading 

to fewer secondary infections.  

 High ω can lead to resurgence in infections by 

increasing the susceptible pool.  

 Natural Death Rate (µ) - Applies to all 

compartments, affecting the overall population 

structure.  

 Reduces susceptible and infected individuals, 

potentially slowing spread.  

 Mathematical modeling highlights how 

vaccine hesitancy directly influences polio spread, 

with higher hesitancy leading to increased infection 

rates, prolonged outbreaks, and challenges in 

achieving herd immunity. 

 Vaccine hesitancy levels have a profound 

impact on polio spread: no hesitancy enables high 

vaccination rates that limit infections and rapidly 

build immunity; moderate hesitancy results in 

higher infection peaks and prolonged transmission, 

highlighting the need for public health education; 

high hesitancy severely reduces coverage, leading 

to major outbreaks and prolonged transmission, 

potentially reversing public health gains. 

 The model underscores that even small 

increases in vaccine hesitancy have 

disproportionately large effects on disease 

transmission, making high coverage essential to 

sustaining polio control. 
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