

## Insilico Studies and Screening of Antiepileptic Activity of Leaf Extracts of Plumeria Pudica

<sup>1</sup>Manisha B S\*, <sup>2</sup>Jane B Mathew, <sup>3</sup>Jennifer Fernandes

Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences/ Nitte (Deemed to be University), Mangalore- 575018, (Karnataka) India

-----

Date of Submission: 05-06-2024

Date of Acceptance: 15-06-2024

#### ABSTRACT

Epilepsy is a neurological disorder, affects people of all age groups. There are number of antiepileptic drugs are available, but most of them are highly susceptible to drug interactions and severe adverse effects. As a result, the use of herbal medicine is increasing becoming popular. So, aim of the study is to provide relevant information of antiepileptic potential of phytoconstituents present in Plumeria pudica. Itis a flowering plant belongs to the family Apocynaceae. The pulverized powder of leaves of Plumeria pudicawas extracted with six solvents. Extracts were analysed by insilico study, acute toxicity and invivoantiepileptic activity.GC-MS analysis revealed the presence of 63 phytoconstituents in different extracts.10 phytochemicals were docked towards the MAPK13 complex with inhibitor with the PDB ID 5EKO, which showed that beta-sitosterol(-5.462)had better docking score when compared to the standard diazepam (-4.738). There are no reports of acute toxicity in leaf extracts, hence toxicity study was carried out and found to be safe up to 2000 mg/kg. This is followed by the screening of antiepileptic activity using the pentylenetetrazole model and the electric model.In maximal shock the pentylenetetrazole model, The medium (200mg/kg) and high doses (400mg/kg) of ethanolic extract showed increasing latency to convulsions (114.13±1.36) and (125.52±1.18\*) and reduced the duration of convulsions.

**KEYWORDS:**Plumeria pudica, antiepileptic, acute toxicity, docking, beta-sitosterol

## I. INTRODUCTION

Epilepsy is a neurological disorder characterized by recurrent seizures, and it affects millions of people worldwide. It can cause changes in behavior, movements, feelings and levels of consciousness. It includes spasms and violent and uncontrolled spasmodic contraction and relaxations of the voluntary muscles<sup>1</sup>. While there

are existing antiepileptic drugs available, they may cause adverse effects and not be effective for all individuals. Therefore, there is a continuous need to explore natural sources, such as plants, for potential antiepileptic compounds. In the present study, the leaves of Plumeria pudicawere taken for extraction of compounds.Plumeria pudica is an ornamental flowering plant that has secondary metabolites with a variety of biological functions. This plant is also known as Nagchampa , wild Plumeria, white frangipani, lei flowers. Plumeria pudica is an evergreen, fast growing shrub containing one or two slender trunks. It can grow up to 5-8 feet height. The leaves are alternate and dark green in colour and they are fiddle shaped or spoon shaped. The plant contain large clusters of bright white flowers upto 3 inches (7.5 cm) with a small yellow center have five petals cover this plant as a beautiful bouquet. So, plant is called as "bridalbouquet"<sup>2</sup>. It belongs to the family Apocynaceae<sup>3</sup>. It possesses different such as laxative, pharmacological actions carminative, antiallergic, antimicrobial, cytotoxic, antiinflammatory, antileprosy, antiulcer, diuretic properties<sup>4</sup>. anti-ascites and The AChEinhibitoryactivity of leaves of Plumeria pudica onzebrafishbrainwascarriedoutbyPrasad et.al.,(2016). Both in-vitro and in-vivo assessments thatmethanolicextract of Plumeria showed pudicareduces the activity of AChE.Based onthis study, the presentwork was carried out<sup>5</sup>. AChE inhibitors can influence the cholinergic system and modulate neurotransmitter balance in the brain, which may result in antiepileptic effects. Their ability to enhance cholinergic transmission, exert neuroprotective effects, modulate GABAergic neurotransmission, and influence excitatory neurotransmitters contributes to their potential antiepileptic activity.



#### II. MATERIALS AND METHODS Collection of plant leaves and preparation of extracts

The leaves of Plumeria pudica were collected in the month of June-July from Manjeshwar, Kasaragod district. The extraction of coarsely powdered leaves was done by cold maceration process using chloroform, ethanol, methanol, n-hexane and petroleum ether and water. These extracts were investigated for phytochemical analysis followed by GC-MS analysis, insilicostudy, acute oral toxicity and invivo antiepileptic studies.



Figure 1:Plumeria pudica tree



Figure 2: Leaf

## **IN-SILICO STUDIES:**

Different phytoconstituents present in Plumeria pudicawere screened for their anti-

epileptic properties using in-silico methodologies in Schrödinger software.

## A. Data collection:

10 different phytoconstituents from the plant P.pudicawere collected from the GC-MS report. Smiles of these ligands were obtained from the Pub-Chem.

MAPK13 complex with inhibitor with the PDB ID 5EKO was selected as the target protein which was obtained from RCSB PDB with a resolution of 2.00  $Å^{6}$ .

## B. Ligand preparation: Ligprep:-

A new project was created in a selected working directory, and the SMILES characters were moved into the workspace of Schrodinger Maestro. These ligands are subjected to the Schrodinger suit 2020-4 LigPrep function. The OPLS-3 force field was used to optimize the energy.

## C. Protein preparation:

MAPK13 complex with inhibitor with the PDB ID 5EKO was imported from the RCSB PDB and visualized in the Maestro interface. The residues or water molecules beyond 5Å were eliminated.Finally, the protein energy was optimized using the OPLS\_2005 force field.

## **D.** Receptor grid generation:

Receptor grid was generated for co-crystal ligands and Diazepam using the GLIDE grid generation wizard. The binding site of the standard drug was chosen and active site grid was generated for molecular docking.

## E. Molecular docking:

The energy-minimized ligands are docked with the optimised crystal structure of the protein in this stage. This aids in determining the affinity with which the ligands interact with the protein's active site (Lock - key affinity). Docking is a method for predicting the preferred orientation of one molecule to another when they are linked together to form a stable complex with the lowest overall energy. The level of association or binding affinity between two molecules may be predicted using knowledge about the preferred orientation. The ligands were docked into the protein's glide grid using the standard precision (SP) technique, followed by the extra precision (XP) algorithm in the GLIDE module of the Schrodinger 2020-4 suite device Maestro -11.7.012. The docked posture of ligands and their



interactions were studied once molecular docking was completed.

#### F. ADME prediction:

ADME calculations of ligands were carried out using the QikProp module of the Schrödinger suite 2020-4, that predicts a molecule's pharmacokinetic properties relating to its physicochemical properties. The parameters like H bond donor and acceptors, molecular volume, log P value, PSA are expected to be within acceptable range when compared to standard values.

#### G. MM/GBSA simulations:

Schrodinger Prime software and molecular mechanics/generalized Boltzmann Surface area methodology (MM/GBSA) were used to calculate the binding Free energy for the protein and group of ligands.

#### ACUTE ORAL TOXICITY STUDY

Acute toxicity studies were carried out using healthy female swiss albino mice weighing 25-30g of age 8-12 weeks older. Animals were obtained from central animal house, Nitte Centre for Animal Research and Experimentation (NUCARE), Paneer, Mangalore after getting approval from the IAEC (Reg.No: 1781/PQ/ERe Bi/S/2014/CPCSEA). The animals were housed in different cages in the animal room with a maintained temperature of 22°C (±3°C).Animal room was provided with artificial lighting with 12 hours of light and 12 hours dark cycle. Animals were provided with the standard dry pellet, purified water with ad libitum.

The acute oral toxicity study of plant extract was carried out by using Swiss albino mice by up and down method as per OECD 425 guidelines<sup>7</sup>. Animals were fasted prior to the dosing (food but not water withheld for 3-4 hours). The fasted body weight of each animal was determined and the dose was calculated according to the body weight. After the substance has been administered, food was withheld for 3-4 hours. Where a dose is administered in fractions over a period of time, it may be necessary to provide the animals with food and water depending on the length of the period. Animals were observed individually at least once during the first 30 minutes after dosing, periodically during the first 24 hours and daily thereafter for a total 14 days<sup>8</sup>. If the animal survives, the second animal receives a higher dose. If the first animal dies, the second animal receives a lower dose. In this present study, initially a dose of 1000mg/kg of ethanolic extract was administered to the mice. There was no behavioural changes or symptoms of toxicity were seen in this dose level. So, the dose was increased to 1500mg/kg and up to 2000mg/kg. Animals were observed for the following parameters :

#### a) Behavioural profile

Awareness : alertness, visual placing, stereotypy, passivity Mood : grooming, restlessness, irritability, fearfulness

#### b) Neurological profile

Motor activity, spontaneous activity, reactivity, touch response, pain response, startle response, tremor, gait, grip strength. Pinna, corneal reflex.

#### c) Autonomic profile :

Writhing, defecation, urination, piloerection, heart rate, respiratory rate

# IN-VIVO ANTIEPIPLEPTIC SCREENING Selection of doses

The doses for the antiepileptic study were selected based on the acute toxicity study. From the study it was found that ethanolic extract of plant leaves was found safe at the concentration of 2000mg/kg and not toxic effects were seen in Swiss albino mice.Therefore, $1/5^{\text{th}}$  (400mg/kg),  $1/10^{\text{th}}(200\text{mg/kg}), 1/20^{\text{th}}(100\text{mg/kg})$  of the LD50 dose were selected for the study.

#### **Pentylenetetrazole induced convulsion in** mice<sup>9,10,11</sup>:

Experimental design: The animals were divided into 5 groups (n=6). The control group was administered with 0.6% w/v of CMC orally. The standard group receives diazepam at the dose of 5mg/kg administered intraperitoneally. The test extract was screened at three dose levels viz. low (200mg/kg), and (100 mg/kg),medium high (400mg/kg). The extract was administered orally. After 1 hour, PTZ was injected intraperitoneally at the dosage of 80mg/kg and observed up to 30 minutes. The latency to onset of seizure, tonic convulsions, and status of each animal was observed.

# Maximal electroshock induced convulsions in mice<sup>9,10,11,12</sup>:

**Experimental design:** Animals were divided into 5 groups (n=6). Animals were checked for sensitivity to electric shock 24hr before administration of test



compounds and those animals which fail to show hind limb tonic extension were rejected. The control group received 0.6% w/v of CMC orally and the standard group received phenytoin (25mg/kg) intraperitoneally. The test extract was screened at three dose levels viz. low (100mg/kg), medium (200mg/kg) and high (400mg/kg). The extract was administered orally. After 60 minutes of administration of test extract, 60Hz alternating current of 150mA intensity for 0.2 sec was given using corneal electrodes. The animals were observed for the various phases of convulsions like tonic, flexion, extension, stupor and mortality due to convulsions. The onset of time of seizures, duration of tonic hind limb extension and mortality for each animal wasobserved. Decrease in duration of hind limb extension was considered as protective action. Abolition of the extensor phase was considered as anti-epileptic effect.

#### Statistical analysis

Graphpad Prism 8.0.2 software was used to calculate all of the data statistically. One-way analysis of variance(ANOVA) was performed on data from six animals per group. The experimental values were expressed as the mean  $\pm$  Standard Error of Mean (SEM). Significance was determined by p values below 0.05,denoted by asterisks (\*p < 0.05, \*\*p<0.01, and \*\*\*p< 0.001).

#### **IN-SILICO STUDIES:**

### III. RESULTS AND DISCUSSION

| Ligand         | Docking | MMGBSA  | HPI    | PI     | HB     | PC     |
|----------------|---------|---------|--------|--------|--------|--------|
|                | score   | dG Bind |        |        |        |        |
| Diazepam       | -4.738  | -45.58  | ALA52  |        | MET110 | LYS116 |
| (standard)     |         |         | ILE85  |        |        |        |
|                |         |         | LEU167 |        |        |        |
|                |         |         | MET107 |        |        |        |
|                |         |         | PRO108 |        |        |        |
|                |         |         | PHE109 |        |        |        |
|                |         |         | MET110 |        |        |        |
|                |         |         | VAL31  |        |        |        |
|                |         |         | ALA157 |        |        |        |
|                |         |         | VAL39  |        |        |        |
| N-hexadecanoic | -3.343  | -90.49  | LEU75  | THR112 | ASP113 |        |
| acid           |         |         | LEU76  | GLN111 |        |        |
|                |         |         | VAL39  |        |        |        |
|                |         |         | VAL31  |        |        |        |
|                |         |         | ALA157 |        |        |        |
|                |         |         | MET110 |        |        |        |
|                |         |         | PHE109 |        |        |        |
|                |         |         | MET107 |        |        |        |
|                |         |         | ALA52  |        |        |        |
|                |         |         | LEU167 |        |        |        |
|                |         |         | ILE85  |        |        |        |
|                |         |         | PHE169 |        |        |        |
|                |         |         | LEU171 |        |        |        |
| Phytol         | -4.802  | -92.81  | LEU75  | THR112 | ASP113 |        |
| 5              |         |         | LEU76  | GLN111 |        |        |
|                |         |         | LEU171 |        |        |        |
|                |         |         | PHE169 |        |        |        |
|                |         |         | LEU167 |        |        |        |
|                |         |         | ILE85  |        |        |        |
|                |         |         | VAL31  |        |        |        |
|                |         |         | ALA157 |        |        |        |
|                |         |         | MET110 |        |        |        |
|                |         |         | PRO108 |        |        |        |



|                  | 1      |         | MET107         | Γ      | T      | 1        |
|------------------|--------|---------|----------------|--------|--------|----------|
|                  |        |         | MET107         |        |        |          |
|                  |        |         | ALA52          |        |        |          |
|                  |        |         | VAL39          |        |        |          |
|                  |        |         |                |        |        |          |
| Beta-sitosterol  | -5.462 | -63.13  | LEU171         | THR112 | MET110 |          |
|                  |        |         | PHE169         | GLN111 |        |          |
|                  |        |         | LEU167         |        |        |          |
|                  |        |         | LEU75          |        |        |          |
|                  |        |         | LEU76          |        |        |          |
|                  |        |         | ILE85          |        |        |          |
|                  |        |         | ALA52          |        |        |          |
|                  |        |         | ALA157         |        |        |          |
|                  |        |         | LEU105         |        |        |          |
|                  |        |         | MET107         |        |        |          |
|                  |        |         | PRO108         |        |        |          |
|                  |        |         | PHE109         |        |        |          |
|                  |        |         | MET110         |        |        |          |
|                  |        |         | VAL31          |        |        |          |
|                  |        |         | VAL31<br>VAL39 |        |        |          |
| Oleic acid       | -3.283 | -102.55 | LEU167         | THR112 | ASP113 | ┠─────┦  |
| OTER actu        | -3.203 | -102.33 | PHE169         |        | LYS116 |          |
|                  |        |         | LEU171         |        | LISIIO |          |
|                  |        |         |                |        |        |          |
|                  |        |         | LEU75          |        |        |          |
|                  |        |         | LEU76          |        |        |          |
|                  |        |         | MET107         |        |        |          |
|                  |        |         | PRO108         |        |        |          |
|                  |        |         | PHE109         |        |        |          |
|                  |        |         | MET110         |        |        |          |
|                  |        |         | ILE85          |        |        |          |
|                  |        |         | ALA52          |        |        |          |
|                  |        |         | VAL31          |        |        |          |
|                  |        |         | VAL39          |        |        |          |
|                  |        |         | ALA157         |        |        |          |
| Squalene         | -4.801 | -104.81 | MET107         | THR112 |        |          |
| _                |        |         | PRO108         | GLN111 |        |          |
|                  |        |         | PHE109         | SER33  |        |          |
|                  |        |         | MET110         | SER38  |        |          |
|                  |        |         | ALA157         |        |        |          |
|                  |        |         | LEU75          |        |        |          |
|                  |        |         | LEU76          |        |        |          |
|                  |        |         | LEU171         |        |        |          |
|                  |        |         | PHE169         |        |        |          |
|                  |        |         | LEU167         |        |        |          |
|                  |        |         | VAL31          |        |        |          |
|                  |        |         | ALA52          |        |        |          |
|                  |        |         | ILE85          |        |        |          |
|                  |        |         | ALA35          |        |        |          |
|                  |        |         | VAL39          |        |        |          |
| Octadecanoic     | 0.042  | -93.01  |                |        |        | <u> </u> |
|                  | -0.943 | -93.01  | LEU171         |        |        |          |
| acid,ethyl ester |        |         | PHE169         |        |        |          |
|                  |        |         | LEU167         |        |        |          |
|                  |        |         | LEU76          |        |        |          |
|                  |        |         | LEU75          |        |        |          |
|                  |        |         | ALA52          |        |        |          |
|                  |        |         |                |        |        |          |



| VAL31<br>METT10<br>PR0108<br>PR019<br>ILESS<br>TYR36VAL31<br>MET107<br>VAL39MET107<br>PR019<br>ILESS<br>TYR36MET110<br>PHE169<br>LEU167<br>LEU76<br>LEU75<br>ALA52<br>ILESS<br>MET107<br>VAL39MET110<br>PHE109<br>PHE109<br>MET110<br>VAL31<br>VAL39Frgost-5,8(14)-<br>dien-3-ol-4.308-62.35LEU167<br>LEU76<br>ILESS<br>MET107<br>VAL31<br>VAL39<br>VAL39GLN111<br>HB101<br>HB102<br>HB109<br>MET110<br>VAL31<br>VAL39ASP168Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU76<br>LEU76<br>LEU76<br>ILEU76<br>HE109<br>MET110<br>ALA52<br>ALA157<br>VAL39STR12<br>CIN11<br>LEU76<br>HE109<br>MET110<br>ALA52<br>ALA157<br>VAL31<br>VAL39STR12<br>CIN111<br>LEX5<br>MET107<br>HID309,12<br>octadecadienoic<br>acid(z.2)-methyl<br>ester-2.598-88.19HL85<br>VAL31<br>LEU76<br>LEU75THR112<br>LV161<br>LEU56<br>MET110<br>ALA52<br>LEU57<br>HE109<br>MET110<br>ALA52<br>LEU76<br>LEU167<br>HE109<br>MET110<br>ALA52<br>HE109<br>MET110<br>ALA52<br>HE109<br>MET110<br>ALA52<br>LEU76<br>LEU76<br>LEU76<br>LEU77<br>HE109<br>MET100<br>ALA52<br>HE109<br>MET100<br>ALA52<br>HE109<br>MET100<br>ALA52<br>HE109<br>MET100<br>ALA52<br>HE109<br>MET100<br>ALA52<br>HE109<br>MET100<br>ALA52<br>HE109<br>MET100<br>ALA52<br>HE109<br>MET100<br>ALA52<br>HE109<br>MET100<br>ALA52<br>HE109<br>MET100<br>ALA52<br>HE109<br>MET100<br>HE109<br>MET100<br>ALA52<br>HE109<br>MET100<br>ALA52<br>HE109<br>MET100<br>HE109<br>MET100<br>HE109<br>MET100<br>HE109<br>MET100<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 1      |         | L =    |        |          | ·        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|---------|--------|--------|----------|----------|
| PHE109<br>PR0108<br>MET107<br>VAL39<br>LESS<br>TYR36PHE109<br>PR0108<br>MET107<br>VAL39MET110Hexadecenoic<br>acid,ethyl ester-4.521-110.49LEU171<br>LEU76<br>LEU76<br>LEU76<br>LESS<br>MET107<br>PR0108<br>PHE109<br>MET110<br>VAL31<br>VAL31<br>VAL31<br>VAL31<br>VAL31<br>VAL31<br>VAL39MET110<br>MET110<br>ALA52<br>LESS<br>MET107<br>PR0108<br>PHE109<br>MET110<br>ALA52<br>MET107<br>PR0108<br>PHE109<br>MET110<br>ALA52<br>MET107<br>PR0108<br>PHE109<br>MET110<br>ALA52<br>ALA517<br>VAL31<br>VAL39ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP168<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169<br>ASP169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |        |         |        |        |          |          |
| PR0108<br>MET107<br>VAL39<br>LE85<br>TYR36MET110Hexadecenoic<br>acid,ethyl ester-4.521-110.49LEU171<br>PHE169<br>LEU167<br>LEU75<br>ALA52<br>HL285<br>MET107<br>PR0108<br>PHE109<br>MET110<br>VAL39<br>TYR36MET110Ergost-5.8(14)-<br>dien-3-ol-4.308-62.35LEU167<br>LEU76<br>ALA52<br>HE109<br>MET110<br>VAL39<br>TYR36GLN111<br>HID30ASP168Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU76<br>LEU76<br>LEU76<br>ALA52<br>HE109<br>MET110<br>ALA52<br>ALA157<br>VAL39JASP1689,12<br>octadecadienoic<br>acid(z.2)-methyl<br>ester-2.598-88.19ILE85<br>PHE109<br>MET106<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>VAL31<br>VAL39JTR112LYS1169,12<br>octadecadienoic<br>ester-2.598-88.19ILE85<br>PHE109<br>MET110<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>VAL31<br>VAL39JTR112LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |        |         |        |        |          |          |
| MET107<br>VAL39<br>ILE85<br>TYR36MET107<br>VAL39<br>ILE85<br>TYR36MET10Hexadecenoic<br>acid,ethyl ester-4.521-110.49IEU171<br>IEU76<br>IEU76<br>IEU76<br>ALA52<br>ILE85<br>MET107<br>PR0108<br>PHE109<br>MET110<br>VAL31<br>VAL31<br>VAL31<br>VAL31<br>VAL39MET110Ergost-5.8(14)-<br>dien-3-ol-4.308-62.35IEU167<br>IEU167<br>NAL312<br>VAL31<br>VAL31<br>VAL39GLN111<br>HID30Pentanoic acid,10-<br>undecenyl ester-4.308-62.35IEU167<br>IEU167<br>NAL312GLN111<br>HID30Pentanoic acid,10-<br>undecenyl ester-2.655-85.23IEU76<br>IEU76<br>NAL312ASP1689,12<br>octadcadienoic<br>acid(x,2)-methyl<br>ester-2.598-88.19TIR85<br>IIE85<br>NA157<br>NAL31<br>VAL31<br>VAL30THR112<br>ILV769,12<br>octadcadienoic<br>acid(x,2)-methyl<br>ester-2.598-88.19IIE85<br>IEE0167<br>IEE0167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>PHE169<br>IEU167<br>IEU167<br>IEU506THR112<br>IVS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |         | PHE109 |        |          |          |
| VAL39<br>ILE85<br>TYR36MET110Hexadecenoic<br>acid,ethyl ester-4.521-110.49PLEU171<br>PLEU171<br>LEU76<br>LEU75<br>ALA52<br>ILE85<br>MET107<br>PR0108<br>PHE109<br>MET110<br>VAL39<br>TYR36MET110Ergost-5.8(14)-<br>dien-3-ol-4.308-62.35LEU76<br>LEU76<br>MET107<br>NAL39<br>TYR36GLN111<br>THR112<br>HD30<br>ALA52<br>ALA52<br>ALA53ASP168Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU76<br>LEU76<br>MET107<br>NAL39<br>VAL39ASP1689,12<br>octadecadienoic<br>acid(z.2)-methyl<br>ester-2.598-88.19ILE85<br>PHE109<br>MET107<br>NAL31<br>VAL31<br>VAL31<br>VAL39THR112<br>HD309,12<br>octadecadienoic<br>acid(z.2)-methyl<br>ester-2.598-88.19ILE85<br>PHE109<br>MET107<br>PHE169<br>LEU167<br>MET106<br>LEU167<br>MET108<br>PHE109<br>MET1008<br>PHE109<br>MET1007<br>PHE109<br>LEU167<br>MET100<br>PHE109<br>MET100<br>PHE109<br>MET107<br>PHE109<br>LEU76THR112<br>LYS116LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |        |         | PRO108 |        |          |          |
| IntersectionIntersectionIntersectionIntersectionIntersectionIntersectionHexadecenoic<br>acid,ethyl ester-4.521-110.49LEU171<br>PHE169<br>LEU167<br>LEU76<br>LEU76<br>LEU76<br>LEU76<br>LEU76<br>LEU76<br>HE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE107<br>ILE85<br>PHE107<br>PHE107<br>ILE85<br>PHE107<br>PHE109<br>PHE109<br>PHE109<br>PHE107<br>ILE85<br>PHE107<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |         | MET107 |        |          |          |
| IntersectionIntersectionIntersectionIntersectionIntersectionIntersectionHexadecenoic<br>acid,ethyl ester-4.521-110.49LEU171<br>PHE169<br>LEU167<br>LEU76<br>LEU76<br>LEU76<br>LEU76<br>LEU76<br>LEU76<br>HE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE107<br>ILE85<br>PHE107<br>PHE107<br>ILE85<br>PHE107<br>PHE109<br>PHE109<br>PHE109<br>PHE107<br>ILE85<br>PHE107<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE109<br>PHE10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |         |        |        |          |          |
| Image: marked box series of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |        |         |        |        |          |          |
| $ \begin{array}{c} \text{Hexadecenoic} \\ \text{acid,ethyl ester} \\ acid,ethyl ester$                             |                    |        |         |        |        |          |          |
| acid,ethyl ester<br>acid,ethyl ester<br>acid,ethyl ester<br>12076<br>LEU76<br>LEU75<br>ALA52<br>LEU76<br>LEU75<br>ALA52<br>NAL39<br>TYR36<br>Ergost-5,8(14)-<br>dien-3-ol<br>4.308<br>-4.308<br>-4.308<br>-62.35<br>LEU76<br>LEU76<br>LEU76<br>NAL31<br>VAL39<br>TYR36<br>Ergost-5,8(14)-<br>dien-3-ol<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.655<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656<br>-2.656 | Hevadecenoic       | -4 521 | -110/19 |        |        | MET110   |          |
| LEU167<br>LEU75<br>ALA52<br>ILE85<br>MET107<br>PR0108<br>PHE109<br>MET110<br>VAL31<br>VAL39         ASP168           Ergost-5,8(14)-<br>dien-3-ol         -4.308         -62.35         LEU167<br>LEU76<br>THR112<br>HID30         ASP168           Pentanoic acid.10-<br>undecenyl ester         -2.655         -85.23         LEU75<br>LEU76<br>LEU76<br>LEU76<br>LEU76         -4.308           Pentanoic acid.10-<br>undecenyl ester         -2.655         -85.23         LEU76<br>LEU76<br>LEU76<br>LEU76<br>LEU171<br>PHE169<br>LEU171<br>PHE169<br>LEU171<br>PHE169<br>LEU167<br>MET110<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>VAL39         -2.558         -85.23         LEU75<br>LEU76<br>LEU76<br>LEU171<br>PHE169<br>LEU171<br>PHE169<br>LEU167<br>MET110<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>VAL39         -2.598         -88.19         ILE85<br>VAL31<br>VAL39         THR112         LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -4.521 | -110.47 |        |        | WILLING  |          |
| LEU76<br>LEU75<br>ALA52<br>ILE85<br>MET107<br>PR0108<br>PHE109<br>MET110<br>VAL39ASP168Ergost-5.8(14)-<br>dien-3-ol-4.308-62.35LEU167<br>LEU167<br>MET100<br>MET110<br>ALA52<br>ALA157<br>VAL31<br>VAL31<br>VAL39ASP168Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU75<br>LEU171<br>NET107<br>PR0108<br>ALA52<br>LEU167<br>LEU167<br>LEU167<br>MET109<br>ALA52<br>LEU167<br>LEU167<br>MET109<br>MET109<br>VAL31<br>VAL31<br>VAL39ASP1689,12<br>octadecadienoic<br>acid(z,2)-methyl<br>ester-2.598-88.19ILE85<br>PHE109<br>ALA157<br>VAL31<br>LEU76<br>LEU76<br>LEU76<br>LEU76<br>LEU77<br>HE109<br>ALA157<br>VAL31<br>VAL31<br>LEU76THR112<br>LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acia, curyr ester  |        |         |        |        |          |          |
| LEU75<br>ALA52<br>ALA53<br>LE85<br>MET107<br>PR0108<br>PR110<br>VAL31<br>VAL31<br>VAL33<br>TYR36LEU167<br>GLN111<br>THR112<br>HID30ASP168<br>ASP168Ergost-5,8(14)-<br>dien-3-ol-4.308<br>-62.35-62.35LEU167<br>LEU167<br>HID30<br>MET107<br>ALA52<br>ALA517<br>VAL31<br>VAL39GLN111<br>THR112<br>HID30ASP168Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU76<br>LEU77<br>LEU76<br>LEU171<br>PHE109<br>MET110<br>ALA52<br>ALA51<br>VAL31<br>VAL39LEU76<br>LEU171<br>LEU167<br>MET107<br>PHE109<br>MET110<br>ALA52<br>LEU176<br>LEU171<br>PHE109<br>MET110<br>ALA52<br>LEU75<br>LEU176<br>LEU171<br>PHE109<br>MET110<br>ALA52<br>LEU76<br>LEU171<br>PHE109<br>MET110<br>ALA52<br>LEU76<br>LEU171<br>PHE109<br>MET110<br>ALA52<br>LEU76<br>LEU171<br>LE85<br>ALA157<br>VAL31<br>VAL31<br>VAL31<br>VAL31<br>LEU167<br>PHE109<br>LEU171<br>LEV161LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |        |         |        |        |          |          |
| ALA52<br>ILE83<br>MET107<br>PR0108<br>PHE109<br>MET110<br>VAL31<br>VAL39<br>TYR36ALA52<br>ILE83<br>PHE109<br>MET1107<br>HID30ASP168Ergost-5,8(14)-<br>dien-3-ol-4.308-62.35LEU167<br>ILE0167<br>MET107<br>ALA52<br>ALA157<br>VAL31<br>VAL39GLN111<br>HID30ASP168Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU75<br>LEU75<br>LEU76<br>LEU76<br>LEU167<br>MET100<br>ALA52<br>ALA157<br>VAL31SP1689,12<br>octadecadienoic<br>acid(z,2)-methyl<br>ester-2.598-88.19ILE85<br>VAL31<br>VAL31<br>VAL31THR112<br>LV16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |        |         |        |        |          |          |
| Image: series of the series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |        |         |        |        |          |          |
| MET107<br>PRO108<br>PHE109<br>MET110<br>VAL31<br>VAL32         MET107<br>PRO108<br>PHE109<br>MET110<br>VAL31<br>VAL39         Image: Constraint of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |        |         |        |        |          |          |
| PR0108<br>PHE109<br>MET110<br>VAL31<br>VAL39<br>TYR36         PRO108<br>PHE109<br>VAL31<br>VAL39<br>TYR36         PRO108<br>PHE109<br>MET110         ASP168           Ergost-5,8(14)-<br>dien-3-ol         -4.308         -62.35         LEU167<br>LEU76<br>PHE109<br>MET110<br>ALA52<br>ALA157<br>VAL31<br>VAL39         GLN111<br>THR112<br>HID30         ASP168           Pentanoic acid,10-<br>undecenyl ester         -2.655         -85.23         LEU75<br>LEU76<br>LEU176<br>LEU171<br>PHE169<br>LEU107<br>MET110<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>VAL39         -2.655         -85.23         LEU76<br>LEU176<br>LEU171<br>PHE169<br>LEU167<br>PKE109<br>MET110<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>VAL39         LYS116           9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester         -2.598         -88.19         ILE85<br>VAL31<br>LEU167<br>PHE169<br>LEU171<br>LEU176         THR112         LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |        |         |        |        |          |          |
| PHE109<br>MET110<br>VAL39<br>TYR36         PHE109<br>MET110<br>VAL39<br>TYR36         Image: Constraint of the system<br>of the system         ASP168           Ergost-5,8(14)-<br>dien-3-ol         -4.308         -62.35         LEU167<br>LEU76<br>THR112<br>MET107<br>HID30         GLN111<br>HID30         ASP168           Pentanoic acid,10-<br>undecenyl ester         -2.655         -85.23         LEU75<br>LEU76<br>LEU76<br>LEU171<br>PHE169<br>LEU171<br>PHE169<br>LEU167<br>MET100<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>VAL39         -2.598         -88.19         LE85<br>VAL31<br>VAL31<br>VAL39         -1121<br>LEU5           9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester         -2.598         -88.19         ILE85<br>VAL31<br>LEU167<br>PHE169<br>LEU171<br>LEU167<br>PHE169<br>LEU176         THR112         LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |        |         |        |        |          |          |
| MET110<br>VAL31<br>VAL31<br>VAL39MET110<br>VAL31<br>VAL39MET110<br>VAL31<br>VAL39ASP168Ergost-5,8(14)-<br>dien-3-ol-4.308-62.35LEU167<br>MET107<br>MET107<br>MET109<br>MET110<br>ALA52<br>ALA157<br>VAL31<br>VAL31<br>VAL31<br>VAL39ASP168Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU75<br>LEU76<br>LEU171<br>PHE169<br>MET110<br>ALA52<br>LEU76<br>LEU167<br>MET107<br>PR0108<br>PHE109<br>MET110<br>ALA52<br>LEU167<br>MET107<br>PR0108<br>PHE109<br>MET110<br>ALA52<br>LEU167<br>MET100<br>PR0108<br>PHE109<br>MET110<br>ALA52<br>LEU57<br>LEU167<br>MET107<br>PR0108<br>PHE109<br>MET110<br>ALA52<br>LEU57<br>LEU167<br>MET107<br>PR0108<br>PHE109<br>MET110<br>ALA52<br>LEU57<br>LEU167<br>MET100<br>PR0108<br>PHE109<br>MET110<br>ALA52<br>LEU57<br>LEU167<br>MET100<br>PR0108<br>PHE109<br>MET110<br>ALA52<br>LEU57<br>LEU167<br>PHE109<br>MET110<br>ALA52<br>LEU57<br>LEU167<br>HE109<br>LEU167<br>PHE109<br>LEU171<br>LEU176LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |        |         |        |        |          |          |
| VAL31<br>VAL39<br>TYR36VAL39<br>VAL39<br>TYR36Ergost-5,8(14)-<br>dien-3-ol-4.308-62.35LEU167<br>LEU167<br>MET107<br>ALA52<br>ALA157<br>VAL31<br>VAL39GLN111<br>THR112<br>HID30ASP168Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU75<br>LEU76<br>LEU76<br>LEU76<br>LEU171<br>PHE169<br>LEU167<br>MET110<br>ALA52<br>LEU75<br>LEU76<br>LEU76-85.23LEU75<br>LEU76<br>LEU769,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester-2.598-88.19ILE85<br>VAL31<br>LEU167<br>MET107<br>PHE169<br>LEU171<br>LEU167<br>MET110<br>ALA52<br>LE09<br>MET110<br>ALA52<br>LEU57<br>LEU167<br>MET107<br>PRO108<br>PHE109<br>MET110<br>ALA52<br>LEU57<br>LEU167<br>MET107<br>PRO108<br>PHE109<br>MET110<br>ALA52<br>LEU57<br>LEU167<br>PHE109<br>MET110<br>ALA52<br>LEU167<br>PHE109<br>MET110<br>ALA52<br>LEU167<br>PHE109<br>MET110<br>ALA52<br>LEU167<br>HE109<br>MET110<br>ALA52<br>LEU167<br>PHE109<br>LEU171<br>LEU167<br>PHE169<br>LEU171<br>LEU167<br>PHE169<br>LEU171<br>LEU167<br>PHE169<br>LEU171<br>LEU167<br>PHE169<br>LEU171<br>LEU167LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |        |         |        |        |          |          |
| Ergost-5,8(14)-<br>dien-3-ol-4.308-62.35LEU167<br>LEU76<br>MET107<br>HE109<br>MET110<br>ALA52<br>ALA157<br>VAL31GLN111<br>HID30<br>HID30<br>HID30<br>HE130<br>ALA52<br>ALA157<br>VAL31ASP168Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU75<br>LEU76<br>LEU76<br>LEU171<br>PHE169<br>LEU167<br>MET110<br>ALA52<br>ILE85<br>HID30-2.6559,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester-2.598-88.19HE85<br>VAL31<br>VAL31<br>VAL31<br>VAL31<br>LEU167<br>MET110<br>ALA52<br>LEU76<br>LEU167<br>MET107<br>PR0108<br>PHE169<br>LEU167<br>MET110<br>ALA52<br>ILE85<br>VAL31<br>VAL31<br>VAL31<br>VAL31THR112<br>LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |        |         | MET110 |        |          |          |
| Ergost-5,8(14)-<br>dien-3-ol-4.308-62.35LEU167<br>LEU76<br>MET107<br>HE109<br>MET110<br>ALA52<br>ALA157<br>VAL31GLN111<br>HID30<br>HID30<br>HID30<br>HE130<br>ALA52<br>ALA157<br>VAL31ASP168Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU75<br>LEU76<br>LEU76<br>LEU171<br>PHE169<br>LEU167<br>MET110<br>ALA52<br>ILE85<br>HID30-2.6559,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester-2.598-88.19HE85<br>VAL31<br>VAL31<br>VAL31<br>VAL31<br>LEU167<br>MET110<br>ALA52<br>LEU76<br>LEU167<br>MET107<br>PR0108<br>PHE169<br>LEU167<br>MET110<br>ALA52<br>ILE85<br>VAL31<br>VAL31<br>VAL31<br>VAL31THR112<br>LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |        |         | VAL31  |        |          |          |
| Ergost-5,8(14)-<br>dien-3-ol-4.308-62.35LEU167<br>LEU76<br>NET107<br>HE109<br>MET110<br>ALA52<br>VAL31<br>VAL39GLN111<br>THR112<br>HID30ASP168Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU76<br>LEU76<br>LEU171<br>PHE169<br>LEU167<br>MET110<br>ALA52<br>LEU167<br>LEU167<br>NET110<br>ALA52<br>LEU167<br>LEU167<br>NET110<br>ALA52<br>LEU167<br>LEU167<br>NET110<br>ALA52<br>LEU167<br>LEU167<br>NET110<br>ALA52<br>HE109<br>MET110<br>ALA52<br>LEU167<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>LEU167<br>HE109<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>LEU167<br>HE109<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>HE109<br>NET110<br>ALA52<br>HE109<br>HE109<br>NET110<br>ALA52<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>HE109<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |        |         | VAL39  |        |          |          |
| $ \begin{array}{c} \mbox{Ergost-5,8(14)-} \\ \mbox{dien-3-ol} \\$                                                                                                                                                                                                                                                                                                                                                                                            |                    |        |         |        |        |          |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ergost-5.8(14)-    | -4,308 | -62.35  |        | GLN111 | ASP168   |          |
| Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU75<br>LEU76<br>LEU171<br>PHE169<br>LEU167<br>MET1100<br>ALA52<br>LEU76<br>LEU76<br>LEU171<br>PHE169<br>LEU167<br>MET1100<br>ALA52<br>LEU85<br>ALA157<br>VAL31<br>VAL39HID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br>HEID30<br><td>dien-3-ol</td> <td>1.500</td> <td>02.35</td> <td></td> <td></td> <td>1101 100</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dien-3-ol          | 1.500  | 02.35   |        |        | 1101 100 |          |
| Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU75<br>LEU76<br>LEU171<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |        |         |        |        |          |          |
| PHE109<br>MET110<br>ALA52<br>ALA157<br>VAL31<br>undecenyl esterPHE109<br>MET110<br>ALA52<br>ALA157<br>VAL39PHE109<br>MET107<br>LEU76<br>LEU171<br>PHE169<br>LEU167<br>PRO108<br>PHE109<br>MET110<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>VAL31<br>VAL31<br>VAL31<br>VAL31<br>VAL31<br>VAL31<br>VAL31<br>LEU167<br>PHE169<br>LEU167<br>PHE169<br>LEU171<br>LEU171<br>LEU167<br>PHE169<br>LEU171<br>LEU171<br>LEU171<br>LEU171LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |        |         |        | IIID30 |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl-2.598-88.19ILE85<br>VAL31<br>VAL30THR112LYS1169,12<br>octadecadienoic<br>acid(z,z)-methyl-2.598-88.19ILE85<br>VAL31<br>VAL30THR112LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |        |         |        |        |          |          |
| Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU75<br>LEU76<br>LEU171<br>PHE169<br>LEU167<br>MET107<br>PRO108<br>PHE109<br>MET110<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>VAL31<br>VAL39LSU9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester-2.598-88.19ILE85<br>VAL31<br>LEU167<br>MET169<br>LEU167<br>MET100<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>LEU167THR112LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |        |         |        |        |          |          |
| ALA157<br>VAL31<br>VAL39ALA157<br>VAL31<br>VAL39Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU75<br>LEU76<br>LEU171<br>PHE169<br>LEU167<br>MET107<br>PRO108<br>PHE109<br>MET110<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>VAL39Image: Comparison of the second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |        |         |        |        |          |          |
| Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU75<br>LEU76<br>LEU171<br>PHE169<br>LEU167<br>MET107<br>PRO108<br>PHE109<br>MET110<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>VAL31<br>VAL39LS19,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester-2.598-88.19ILE85<br>VAL31<br>LEU167<br>PHE169<br>LEU167<br>PHE169<br>LEU171<br>LEU76THR112LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |        |         |        |        |          |          |
| Pentanoic acid,10-<br>undecenyl ester-2.655-85.23LEU75<br>LEU76<br>LEU171<br>PHE169<br>LEU167<br>MET107<br>PRO108<br>PHE109<br>MET110<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>VAL39LEV<br>LSLEUS10<br>LEU167<br>MET110<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>LEU167<br>PHE169<br>LEU167<br>PHE169<br>LEU171<br>LEU167<br>PHE169<br>LEU171<br>LEU167<br>PHE169<br>LEU171<br>LEU167<br>PHE169<br>LEU171<br>LEU167<br>PHE169<br>LEU171<br>LEU167<br>PHE169<br>LEU171<br>LEU167THR112<br>LYS116LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |        |         |        |        |          |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |        |         |        |        |          |          |
| undecenyl ester<br>undecenyl ester<br>9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester<br>Unit diamond with the start of the start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |        |         | VAL39  |        |          |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pentanoic acid,10- | -2.655 | -85.23  | LEU75  |        |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl-2.598-88.19ILE85<br>ALA157<br>VAL31<br>LEU167<br>PRO108<br>PHE109<br>MET110<br>ALA52<br>ILE85<br>ALA157<br>VAL31<br>LEU167<br>PHE169<br>LEU171<br>LEU76THR112LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | undecenyl ester    |        |         | LEU76  |        |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester-2.598-88.19ILE85<br>NALA157<br>VAL31<br>LEU167<br>PHE169<br>ILEU171<br>LEU176THR112LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                  |        |         | LEU171 |        |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester-2.598-88.19ILE85<br>NALA157<br>VAL31<br>LEU167<br>PHE169<br>ILEU171<br>LEU176THR112LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |        |         | PHE169 |        |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester-2.598-88.19ILE85<br>VAL31<br>VAL31<br>LEU167<br>PHE169<br>LEU171<br>LEU76THR112LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |        |         |        |        |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester-2.598-88.19ILE85<br>VAL31<br>VAL31<br>LEU167<br>PHE169<br>LEU171<br>LEU76THR112LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |        |         |        |        |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester-2.598-88.19ILE85<br>VAL31<br>VAL31<br>LEU167<br>PHE169<br>LEU171<br>LEU76THR112LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |        |         |        |        |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester-2.598-88.19ILE85<br>VAL31<br>VAL31<br>LEU167<br>HHE169<br>LEU171<br>LEU76THR112LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |        |         |        |        |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester-2.598-88.19ILE85<br>NALA157<br>VAL31<br>LEU167<br>PHE169<br>LEU171<br>LEU76THR112LYS116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |         |        |        |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester - 2.598 -88.19 ILE85<br>Deter - 2.598 -88.19 ILE85<br>Deter - 2.598 -88.19 ILE85<br>Deter - 2.598 -88.19 Determined and the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |        |         |        |        |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester - 2.598 -88.19 ILE85<br>pHE169<br>LEU171<br>LEU167<br>PHE169<br>LEU171<br>LEU76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |        |         |        |        |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |        |         |        |        |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |        |         |        |        |          |          |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |        |         |        |        |          |          |
| octadecadienoicVAL31acid(z,z)-methylLEU167esterPHE169LEU171LEU76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |        |         | VAL39  |        |          |          |
| octadecadienoicVAL31acid(z,z)-methylLEU167esterPHE169LEU171LEU76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |        |         |        |        |          |          |
| octadecadienoicVAL31acid(z,z)-methylLEU167esterPHE169LEU171LEU76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,12               | -2.598 | -88.19  | ILE85  | THR112 | LYS116   |          |
| acid(z,z)-methyl LEU167 PHE169<br>LEU171 LEU76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |        |         |        |        |          |          |
| ester PHE169<br>LEU171<br>LEU76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |        |         |        |        |          |          |
| LEU171<br>LEU76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                  |        |         |        |        |          |          |
| LEU76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 05001              |        |         |        |        |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |        |         |        |        |          |          |
| LEU/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |        |         |        |        |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |        |         | LEUIJ  |        | I        | <u> </u> |



| LEU105 |  |
|--------|--|
| ALA52  |  |
| MET107 |  |
| PRO108 |  |
| PHE109 |  |
| MET110 |  |
| VAL39  |  |
| VAL158 |  |
| ALA157 |  |

\*HPI- Hydrophobic interaction, PI - Polar interaction with ligand, HB - Hydrogen bonding, PPS - Pi-pi stacking, PC - Pi cations

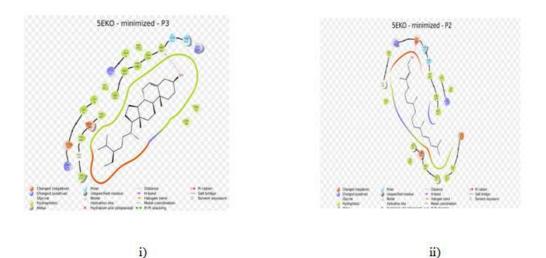
| Ligand                                                    | Molecular<br>weight | Molecular<br>volume | PSA         | QPlogPw    | H-<br>acceptor  | H-donor   |
|-----------------------------------------------------------|---------------------|---------------------|-------------|------------|-----------------|-----------|
| Acceptable range                                          | 130.0 -725.0        | 500.0 –<br>2000.0 – | 7.0 - 200.0 | 4.0 - 45.0 | 2.0 –<br>20.0 – | 0.0 - 6.0 |
| Diazepam<br>(standard)                                    | 284.744             | 896.098             | 46.901      | 7.188      | 4               | 0         |
| 9,12<br>octadecadienoic<br>acid(z,z)-methyl<br>ester(P10) | 294.476             | 1281.425            | 35.783      | 1.044      | 2               | 0         |
| Pentanoic acid,10-<br>undecenyl ester<br>(P9)             | 254.412             | 1135.442            | 36.224      | 1.122      | 2               | 0         |
| Ergost-5,8(14)-<br>dien-3-ol (P8)                         | 398.671             | 1409.695            | 21.042      | 3.789      | 1.7             | 1         |
| Hexadecenoic<br>acid,ethyl ester<br>(P7)                  | 284.481             | 1270.961            | 35.034      | 0.557      | 2               | 0         |
| Octadecanoic<br>acid,ethyl ester<br>(P6)                  | 312.535             | 1389.721            | 36.645      | 0.296      | 2               | 0         |
| Squalene(P5)                                              | 410.725             | 1758.771            | 0.000       | -3.083     | 0               | 0         |
| Oleic acid(P4)                                            | 282.465             | 1224.029            | 51.734      | 2.463      | 2               | 1         |
| Beta-sitosterol(P3)                                       | 414.713             | 1457.614            | 22.279      | 3.670      | 1.7             | 1         |
| Phytol (P2)                                               | 296.535             | 1294.708            | 23.019      | 2.040      | 1.7             | 1         |
| N-hexadecanoic<br>acid (P1)                               | 256.428             | 1116.919            | 50.333      | 2.363      | 2               | 1         |

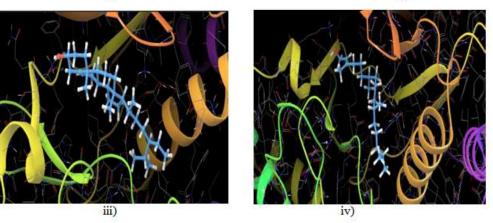
|                                                 | Table 3: Lipinski's Rule of five |          |             |                |            |  |  |  |
|-------------------------------------------------|----------------------------------|----------|-------------|----------------|------------|--|--|--|
| Ligand                                          | Molecular<br>weight              | HB Donor | HB Acceptor | QPlog p<br>o/w | RO5        |  |  |  |
| Acceptable range                                | ≤500                             | ≤ 5      | ≤ 10        | < 5            | ≤ <b>5</b> |  |  |  |
| Diazepam<br>(standard)                          | 284.744                          | 0        | 4           | 2.992          | 0          |  |  |  |
| 9,12<br>octadecadienoic<br>acid(z,z)-<br>methyl | 294.476                          | 0        | 2           | 6.346          | 1          |  |  |  |



| 254.412 | 0                                                                         | 2                                                                                                                                                               | 5.436                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                  |
|---------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |
|         |                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |
|         |                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |
| 398.671 | 1                                                                         | 1.7                                                                                                                                                             | 7.214                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                  |
|         |                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |
| 284.481 | 0                                                                         | 2                                                                                                                                                               | 6.248                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                  |
|         |                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |
|         |                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |
| 312.535 | 0                                                                         | 2                                                                                                                                                               | 7.003                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                  |
|         |                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |
|         |                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |
| 410.725 | 0                                                                         | 0                                                                                                                                                               | 13.918                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                  |
| 282.465 | 1                                                                         | 2                                                                                                                                                               | 5.905                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                  |
| 414.713 | 1                                                                         | 1.7                                                                                                                                                             | 7.473                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                  |
|         |                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |
| 296.535 | 1                                                                         | 1.7                                                                                                                                                             | 6.334                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                  |
| 256.428 | 1                                                                         | 2                                                                                                                                                               | 5.247                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                  |
|         |                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |
|         |                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |
|         | 398.671<br>284.481<br>312.535<br>410.725<br>282.465<br>414.713<br>296.535 | 398.671       1         284.481       0         312.535       0         410.725       0         282.465       1         414.713       1         296.535       1 | 398.671       1       1.7         284.481       0       2         312.535       0       2         410.725       0       0         282.465       1       2         414.713       1       1.7         296.535       1       1.7 | 398.671       1       1.7       7.214         284.481       0       2       6.248         312.535       0       2       7.003         410.725       0       0       13.918         282.465       1       2       5.905         414.713       1       1.7       7.473         296.535       1       1.7       6.334 |

## Table 4:ADMET properties of the compounds


| Ligand           | QPPCaco        | % Human    | CNS            | BBB        | hERG          |
|------------------|----------------|------------|----------------|------------|---------------|
| -                | _              | Oral       |                |            |               |
|                  |                | Absorption |                |            |               |
| Acceptable       | <25 poor, >500 | 1-low      | -2 (inactive), | -3.0 - 1.2 | concern below |
| range            | great          | 2-medium   | +2 (active)    |            | -5            |
|                  |                | 3-high     |                |            |               |
| Diazepam         | 2684.726       | 3          | 1              | 0.199      | -5.097        |
| (standard)       |                |            |                |            |               |
| 9,12             | 2998.954       | 1          | -1             | -0.920     | -5.670        |
| octadecadienoic  |                |            |                |            |               |
| acid(z,z)-       |                |            |                |            |               |
| methyl           |                |            |                |            |               |
| ester(P10)       |                |            |                |            |               |
| Pentanoic        | 3322.530       | 3          | -1             | -0.786     | -5.509        |
| acid,10-         |                |            |                |            |               |
| undecenyl ester  |                |            |                |            |               |
| (P9)             |                |            |                |            |               |
| Ergost-5,8(14)-  | 4026.510       | 1          | 0              | -0.205     | -4.547        |
| dien-3-ol (P8)   |                |            |                |            |               |
| Hexadecenoic     | 3131.098       | 1          | -1             | -0.964     | -5.559        |
| acid,ethyl ester |                |            |                |            |               |
| (P7)             |                |            |                |            |               |
| Octadecanoic     | 2941.715       | 1          | -2             | -1.152     | -5.863        |
| acid,ethyl ester |                |            |                |            |               |
| (P6)             |                |            |                |            |               |
| Squalene(P5)     | 9906.038       | 1          | 2              | 2.038      | -6.224        |
| Oleic acid(P4)   | 227.332        | 1          | -2             | -1.599     | -3.644        |
| Beta-            | 3404.598       | 1          | 0              | -0.340     | -4.545        |
| sitosterol(P3)   |                |            |                |            |               |
| Phytol (P2)      | 2844.938       | 1          | -1             | -0.923     | -5.318        |




| N-           | 267.129 | 3 | -2 | -1.396 | -3.236 |  |
|--------------|---------|---|----|--------|--------|--|
| hexadecanoic |         |   |    |        |        |  |
| acid (P1)    |         |   |    |        |        |  |

The docking results showed that betasitosterol and phytol had better dockingscores when compared to the standard diazepam. Beta-sitosterol was exhibited the best docking score which was -5.462 when compared to diazepam which was -4.738. The docking score of other compounds i.e., N-hexadecanoic acid, oleic acid, squalene, octadecanoic acid, ethyl ester, hexadecenoic acid,ethyl ester,ergost-5,8(14)-dien-3-ol,pentanoic acid,10- undecenyl ester,9,12 octadecadienoic acid(z,z)-methyl ester was found to be -3.343,-3.283,-4.801,-0.943,-4.521,-4.308,-2.655,-2.598 respectively. All compounds except squalene possess required physicochemical properties. These compounds possessed molecular weight, hydrogen bond donor, hydrogen bond acceptors in the normal

range. The one violation is due to increased QPlog p o/w than the recommended range which implies reduced permeability through biological membranes. Yet, due to only one violation from the rule of 5 the compounds are said to have oral bioavailability. As per the in-silico report, almost all the compounds were having similar to better affinity while interacting with the protein whereas phytol and beta-sitosterol were found to have the best affinity with lowest binding energy. In case of physicochemical, ADME properties and Lipinski Rule of five, Pentanoic acid, 10-undecenyl esterwas found to be the best candidate with significant docking result similar to that of standard Diazepam along with good physicochemical and ADME properties









#### ACUTE TOXICITY STUDY

The acute oral toxicity study was carried out on Swiss albino mice by using up and down method according to the OECD guidelines 425.The ethanoilc extract of the leaves of Plumeria pudica at the dose of 2000mg/kg, did not show any behavioral changes or symptoms of toxicity during the short-term (48 h) and long-term (14 days) observation period. Hence, the plant extract was found to be safe up to the tested dose of 2000mg/kg, p.o.

## EVALUATION OF INVIVO ANTIEPILEPTIC ACTIVITY Pentylenetetrazole induced convulsions:

| Table 5 : Effect of ethanolic extract of P.pudica leaves in the PTZ model |
|---------------------------------------------------------------------------|
|---------------------------------------------------------------------------|

|            |                      |                            | Tonic<br>convulsi<br>on<br>(Sec/<br>0.5hr) | Status of<br>after 0.5hrs | the animal      | Status of animal<br>after 24hrs |                     |
|------------|----------------------|----------------------------|--------------------------------------------|---------------------------|-----------------|---------------------------------|---------------------|
|            |                      |                            |                                            | No of<br>animals<br>alive | %<br>protection | No of<br>animal<br>alive        | %<br>Protecti<br>on |
| Group<br>s | Treatment            | Latency<br>(Sec/<br>0.5hr) |                                            |                           |                 |                                 |                     |
| Ι          | Control              | $58.26 \pm 0.87$           | 99.52±<br>0.56                             | 0/6                       | 0               | 0/6                             | 0                   |
| П          | Diazepam<br>(5mg/kg) | 165.96±<br>0.57*           | 123.56±<br>0.24**                          | 6/6                       | 100             | 6/6                             | 100                 |
| III        | Low<br>(100mg/kg)    | $65.05 \pm 0.41 **$        | 112.58±<br>1.05*                           | 5/6                       | 83.33           | 5/6                             | 83.33               |
| IV         | Medium<br>(200mg/kg) | 114.13±<br>1.36*           | 135.36±<br>0.76ns                          | 6/6                       | 100             | 6/6                             | 100                 |
| IV         | High<br>(400mg/kg)   | 125.52±<br>1.18*           | 98.38±<br>0.57*                            | 6/6                       | 100             | 6/6                             | 100                 |

Values are expressed as mean  $\pm$  SEM for 6 animals; \*\*\*p < 0.0001, \*p < 0.001 and \*p < 0.05 Vs control.

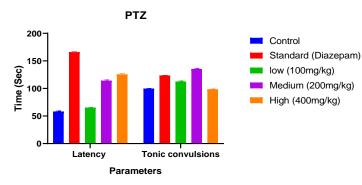
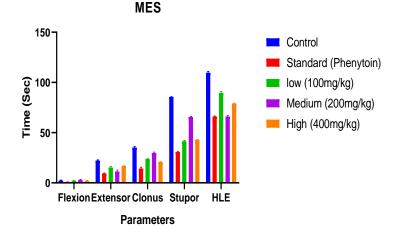
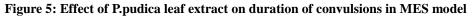



Figure 4: Effect of P.pudica leaf extract on latency and tonic convulsions in PTZ model

In PTZ model, ethanolic leaf extracts at the dose of 100mg/kg, 200mg/kg and 400mg/kg were administered to the mice and latency to onset of seizures and tonic convulsions were measured. The results indicated a significant decrease in duration of convulsions across the three doses of ethanolic extract as compare to control and standard values. The standard diazepam showed




longer latency to tonic convulsions  $(165.96\pm0.57*\text{seconds})$  and shorter duration of convulsions $(123.56\pm0.24**)$  compare to control group.The medium and high dose of ethanolic extract showed similar efficacy in increasing latency to convulsions  $(114.13\pm1.36*)$  and


 $(125.52\pm1.18^*)$  and reducing the duration of convulsions  $(135.36\pm0.76^{ns})$  and  $(98.38\pm0.57^*)$  when compared to the control and standard group. This revealed that medium and high doses of ethanolic leaf extract showed significant antiepileptic activity.

| Groups | Treatment  | Flexion | Extensor    | Clonus             | Stupor | HLE                | %<br>protection |
|--------|------------|---------|-------------|--------------------|--------|--------------------|-----------------|
|        |            |         |             |                    |        |                    |                 |
|        |            | 2.3±    | $22.09 \pm$ | 35.16±             | 85.26± | $109.53 \pm$       |                 |
| Ι      | Control    | 0.36    | 0.86        | 1.05               | 0.51   | 1.43               | 0               |
|        |            |         |             |                    |        |                    |                 |
|        |            | 0.9±    | 9.36±       | 14.25±             | 30.58± | 65.89±             |                 |
| II     | Phenytoin  | 0.11*   | 0.36**      | 1.32*              | 0.55*  | 0.65*              | 100             |
|        | Low        | 2.1±    | 15.25±      | 23.56±             | 41.25± | 89.58±             |                 |
| III    | (100mg/kg) | 0.10**  | 0.96*       | 0.53 <sup>ns</sup> | 1.05*  | 1.45*              | 66.6            |
|        | Medium     | 2.9±    | 11.25±      | 29.56±             | 65.58± | 65.89±             |                 |
| IV     | (200mg/kg) | 0.40*   | 1.43*       | 1.05*              | 0.52*  | 1.05**             | 83.33           |
|        | High       | 1.9±    | 16.58±      | 20.58±             | 42.58± | 78.85±             |                 |
| IV     | (400mg/kg) | 0.49*   | 0.53*       | 0.51**             | 0.47*  | 0.51 <sup>ns</sup> | 83.33           |

| Maximal electric shock induced convulsions:              |  |  |  |  |  |  |
|----------------------------------------------------------|--|--|--|--|--|--|
| Table 6 : Effect of ethanolic extract of P.pudica leaves |  |  |  |  |  |  |

Values are expressed as mean  $\pm$  SEM for 6 animals; \*\*\*\*p < 0.001, \*p < 0.001 and \*p < 0.05 Vs control.

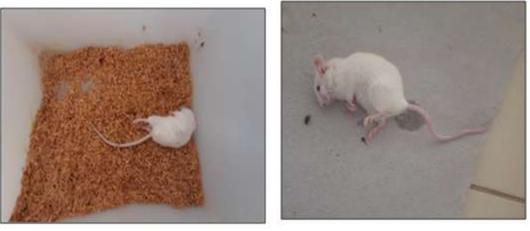




In the MES model, the standard phenytoin showed a significant reduction in all seizure parameters compare to control group. It showed 100% of protection against seizure. All the doses of extract showed a significant reduction in seizure parameters as compared to the control group. The medium dose showed highest flexion  $(2.9\pm0.40^*)$ , clonus  $(29.56\pm1.05^*)$  and stupor  $(65.58\pm0.52^*)$  and high dose of extract showed highest extensor value  $(16.58\pm0.53)$  as compared to the control group. HLE durations of low, medium and high doses are  $89.58\pm3.56^*, 65.89\pm2.58^{**}$  and  $78.85\pm1.25^{ns}$  respectively. The medium and high doses of



ethanolic extract of leaves exhibited lowest period of HLE of  $65.89 \pm 1.05^{**}$  and  $78.85 \pm 0.51^{ns}$  seconds indicating highest % percentage protection against




Stupor

seizure. whereas, the low dose of extract was less effective against MES seizure.



Extensor



Hindlimb extension



#### Figure6 : Animals showing different phases of convulsions

#### **IV. CONCLUSION**

The study reports the successful extraction, insilico study, acute oral toxicity study and evaluation of antiepileptic activity of the leaf extracts of plumeria pudica. In the present study, 10 phytoconstituents present in leaf were docked towards the MAPK13 complex with inhibitor (5EKO), which showed that beta-sitosterol (-5.462) had better docking score when compared to the standard diazepam (-4.738). The acute oral toxicity study of ethanolic leaf extract on mice was revealed that,the extract was found to be safe up to the tested dose of 2000mg/kg. Anti-epileptic activity was

evaluated using in-vivo methods by PTZ-induced convulsion and MES-induced convulsion. In PTZ model, the medium and high doses of ethanolic extract showed similar efficacy in increasing latency to convulsions ( $114.13\pm1.36$ ) and ( $125.52\pm1.18^{*}$ ) and reducing the duration of convulsions ( $135.36\pm0.76^{ns}$ ) and ( $98.38\pm0.57^{*}$ ) when compared to the standard group. In case of MES model, the medium and high doses of ethanolic extract of leaves exhibited lowest period of HLE of  $65.89\pm1.05$  and  $78.85\pm0.51$  seconds indicating highest % percentage protection against seizure. The phytochemicals present in the



ethanolic extract of leaf responsible for the antiepileptic acitivity.so, it can be concluded that leaf extacts of Plumeia pudica possess antiepileptic activity, it can be used as herbal medicine to treat seizure.

### **CONFLICT OF INTERESTS**

The authors declare that there is no conflict of interest.

#### REFERENCES

- Tanko Y, Ejike Daniel E, Jimoh A, Yusuf M, A. M, Balarabe F, et al. Anticonvulsant Activity of Methanol Stem Bark Extract of Securinega Virosa (Euphobiaceae) in Mice. IOSR J Pharm Biol Sci. 2012;4:44– 7.https://doi.org/10.9790/3008-0414447.
- [2]. Rutuba C, Sharma P, Modi N. Preliminary Phytochemical Screening, Quantitative Estimation of Total Phenols, Total Flavonoids and Anti-oxidant Activity of Leaves of Plumeria pudica Jacq. Indian J.Sci.2021;12:32926–35.
- [3]. Suarez SN, Sanahuja G, Lopez P, Caldwell DL. First confirmed report of powdery mildew (Erysiphe sp.) on Plumeria pudica in the United States. New Dis Rep. 2017;36:3–3. <u>https://doi.org/10.5197/j.2044-</u> 0588.2017.036.003
- [4]. Bhardwaj P, Rathore GS. Investigation of Analgesic Activity of Roots and Flowers of Plumeria Pudica Linn. Turk Online J Qual Inq. 2021;12:6387–91.
- [5]. Prasad WWC, Viraj MPM, Philip R, Rani J, Bn S. Extraction of acetylcholine esterase inhibitors from plumeria pudica and analyzing its activity on zebrafish brain. World J Pharm Pharm Sci.2016;5(4):1781-91.
- [6]. Shabana K, Salahuddin, Mazumder A, Singh H, Kumar R, Tyagi S, Datt V, Shankar Sharma A, Shahar Yar M, Jawed Ahsan M, Kumar Yadav R. Synthesis, Characterization, In Silico and In Vivo Evaluation of Benzimidazole-Bearing Quinoline Schiff Bases as New Anticonvulsant Agents. ChemistrySelect. 2023 Jun 5;8(21):e202300209.
- [7]. OECD. Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure. OECD; 2022. <u>https://doi.org/10.1787/9789264071049-</u> <u>en</u>.

- [8]. Chowdhury B, Acharya B, Sahu D. Anticonvulsant and antioxidant effect of hydroalcoholic extract of Valeriana wallichii rhizomes in acute and chronic models of epilepsy in albino rats. IJNPR Former Nat Prod Radiance NPR 2022;12(4):585–91. https://doi.org/10.56042/ijnpr.v12i4.45216
- [9]. Eggadi V, Kulandaivelu U, B S S, Rao Jupally V. Screening of the Anticonvulsant Activity of Some Isatin Derivatives in Experimental Seizure Models and Its Effect on Brain GABA Levels in Mice. Am J Pharmacol Sci. 2013;1(3):42–6. https://doi.org/10.12691/ajps-1-3-3.
- [10]. Singh NK, Laloo D, Garabadu D, Singh TD, Singh VP. Ichnocarpus frutescens Ameliorates Experimentally Induced Convulsion in Rats. Int Sch Res Not. 2014:1–9.

https://doi.org/10.1155/2014/434179.

- [11]. Manavi MA, Jafari RM, Shafaroodi H, Ejtemaei- Mehr S, Sharifzadeh M, Dehpour AR. Anticonvulsant effects of ivermectin on pentylenetetrazole- and maximal electroshock-induced seizures in mice: the role of GABAergic system and KATP channels. Heliyon. 2022;8(11): e11375.https://doi.org/10.1016/j.heliyon.2 022.e11375.
- Kumar DP, Kumar MS. Evaluation of Anticonvulsant Activity of Hydro Ethanolic Extract of Coccinia grandis in Mice. Sch Acad J Pharm. 2022;11(9):149– 54. https://doi.org/10.36347/sajp.2022.v11i09.

https://doi.org/10.36347/sajp.2022.v11i09. 005.