

Role of AI in combating Antimicrobial Resistance (AMR)

Saksham¹, Rohit Sharma¹, Samir Ansari¹, Nakul Gupta¹, Shweta Sharma^{*}

***Department of Pharmaceutical Chemistry, IIMT College of Pharmacy, IIMT Group of Colleges, Greater

Noida

Date of Submission: 10-10-2025 Date of Acceptance: 20-10-2025

ABSTRACT

Antimicrobial resistance (AMR) has emerged as a critical global health threat, undermining the efficacy of existing therapies and posing significant challenges to modern medicine. intelligence (AI) and machine learning (ML) have recently become powerful tools in addressing AMR by enabling rapid, data-driven solutions. This review explores the applications of AI and ML in **AMR** management, including pathogen identification, understanding resistance mechanisms, predicting treatment outcomes, and discovering novel antimicrobial agents. By analyzing large-scale genomic and clinical datasets, ML algorithms can identify resistance-associated markers, guide targeted development, and improve the prediction of AMR trends with minimal human intervention. AI-based systems also support healthcare providers in selecting optimal antimicrobial therapies and enhancing antibiotic stewardship through improved prescribing practices. Furthermore, AI-driven surveillance facilitates early detection of resistance outbreaks and optimization of drug distribution While integration into clinical strategies. workflows faces challenges such as data security, ethical considerations, and algorithmic bias, continued advancements in AI and ML hold great promise for transforming AMR surveillance, diagnosis, and treatment.

Keywords: Artificial intelligence; Machine Learning; Antimicrobial Resistance; Pathogen Identification; Personalized treatment. Drug discovery; AMR Surveillance.

I. INTRODUCTION

Antibiotic resistance (AMR) is recognised as a global public health crisis driven by both epidemiological and economic factors. This growing threat has prompted the World Health Organisation (WHO) to develop an action plan to combat the issue. Artificial intelligence (AI) and machine learning (ML) have emerged as promising tools to address AMR by leveraging clinical and laboratory data for evidence-based decision-

----making, prediction, and surveillance. Machine learning provides advanced methods for analysing complex datasets, while AI enhances decisionmaking through rapid information processing and adaptive algorithms. Unlike humans, AI systems are not constrained by fatigue, biases, or outdated cultural practices, enabling them to provide more consistent and accurate outputs.AI and ML have shown significant potential in improving the efficiency of research into complex health challenges such as AMR. Their applications include:Data analysis and predictive modelling to identify resistance trends.Drug discovery and design for developing novel antibiotics and alternative therapies. Surveillance systems that continuously monitor antibiotic use, outbreaks, and resistance patterns.Clinical decision systems (CDSS) assist healthcare professionals in prescribing antibiotics more responsibly. Traditional drug development methods are expensive and time-consuming, whereas AI systems can screen large chemical libraries, predict antibacterial activity, and identify promising candidates within a much shorter timeframe. Given the slow pace of current antibiotic research, accelerating innovation through critical.³AMR has evolved into one of the most pressing public health challenges of the 21st century. It occurs when microorganisms—such as bacteria, viruses, fungi, and parasites—develop resistance to antimicrobial agents, including commonly used antibiotics. Key drivers include the inappropriate and excessive use of antibiotics across sectors such as healthcare, agriculture, food production, veterinary medicine, and even military operations. Often referred to as a "silent pandemic," AMR demands urgent and decisive global action. Without immediate precautions, AMR is projected to become the leading cause of death worldwide by 2050, with an estimated 10 million deaths annually. Alarmingly, in 2019 alone, AMR was directly responsible for over 1.2 million deaths worldwide.

II. AI/ML IN DRUG DISCOVERY AND **DESIGN**

UPRA Journal

Advances in the discovery and design of drug products have been greatly enhanced through the application of artificial intelligence (AI) and machine learning (ML). These technologies facilitate the identification of new therapeutic targets and mechanisms of action, thereby improving drug effectiveness while increasing the accuracy of safety and efficacy predictions.A landmark achievement in this domain is AlphaFold, developed by DeepMind (a subsidiary of Google AI).5 AlphaFold is an AI/ML framework capable of accurately predicting the three-dimensional (3D) structure of proteins, significantly accelerating and improving the precision of drug discovery processes. Similarly, pharmaceutical companies are leveraging IBM's Watson Health Platform to

accelerate drug design and development. Watson can analyse large-scale biomedical Health databases to identify novel therapies, recognise potential drug targets, and predict safety profiles and clinical outcomes.

In addition, biotechnology firms are also driving innovation. For example, BenevolentAI (often misspelt as "Benevolent Ki") integrates over two billion biomedical articles with diverse data sources to identify novel drug targets, particularly for rare diseases where treatment options remain limited. Furthermore, specialised AI models are being developed to design new molecules against multidrug-resistant pathogens. One such example includes research into creating drug candidates targeting Acinetobacter baumannii, a highly resistant "priority pathogen" identified by the World Health Organisation. 7

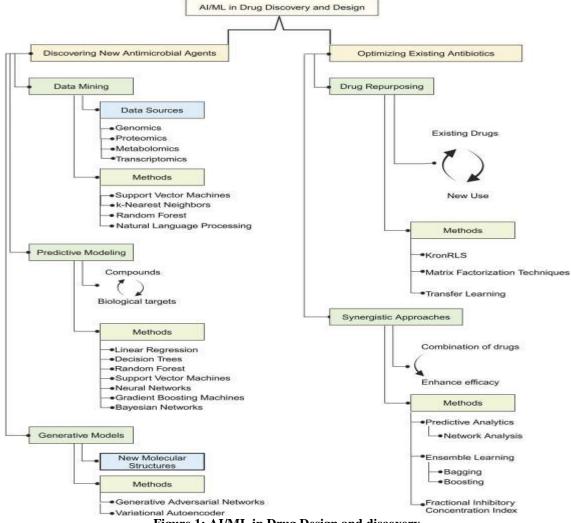


Figure 1: AI/ML in Drug Design and discovery

Volume 10, Issue 5 Sept - Oct 2025, pp: 1133-1141 www.ijprajournal.com ISSN: 2456-4494

Diagnosis in AMR via AI

Typically, essential strategies are employed to detect antimicrobial resistance (AMR). These include antibiotic susceptibility tests (AST) and whole-genome sequencing (WGS). While conventional methods are effective in evaluating antibiotic resistance, they often lack insight into the underlying resistance mechanisms. In contrast, WGS-AST provides reliable and accurate AMR detection, although it requires access to large multidimensional databases for proper information retrieval.⁸

Artificial intelligence (AI) plays a vital role in enhancing these established technologies, advancing research, and supporting development of intelligent healthcare systems. AIenabled applications include speech recognition, image recognition, natural language processing, and decision-making based on comprehensive data analysis. The progress of AI systems is closely tied to the availability of healthcare data and the continuous improvement in computational power. This advancement has facilitated the use of mathematical techniques such as neural networks (NNs) and machine learning/deep learning. The expansion of deep neural network topologiesmarked by increasing complexity in recent years highlights the essential contribution of AI in strengthening conventional **AMR** detection strategies. Timely diagnosis of infectious diseases, distinguishing between infectious and noninfectious conditions, and ensuring appropriate treatment are critical in combating AMR. AI is an indispensable tool to address this global challenge and significantly supports effective healthcare responses. 10 Antibiograms remain crucial monitoring susceptibility patterns and identifying high-risk infectious agents. In this context, the development of tailor-made machine learning models shows promise in predicting and mitigating AMR. By integrating predictive analytics, AI enhances early detection and ensures precise treatment of infections. Moreover, AI contributes to:Improving surveillance systems to track AMR trends.Identifying emerging resistant strains.Optimising healthcare system management.Accelerating drug discovery by predicting potential antibacterial candidates. Altogether, AI-driven approaches enable the development of effective and targeted antibacterial therapies (as illustrated in the Figure), and they summarise the broad potential applications of AI in the AMR domain.11

III. DL/ML MODELS FOR AMR PROGNOSIS

The essential principle behind deep learning (DL) and machine learning (ML) models is to use large datasets to capture the inherent nonlinear correlations between input features and outputs, which are otherwise difficult to model. Training datasets serve as the starting point for developing both DL and ML models. Once trained, these models are evaluated using previously unseen data to assess generalizability. Before training, data must undergo preprocessing and feature extraction to ensure that only relevant and informative characteristics are included. The dataset is typically divided into training, validation, and testing subsets. 12 During training, the model optimizes its parameters to achieve the most favorable settings, while techniques such as cross-validation are applied to improve robustness and prevent overfitting.A DLmodel includes hyperparameters, making it essential to carefully select the most suitable model depending on the application and the nature of the input data. Complex models tend to have high variance, whereas simpler models often exhibit higher bias but may perform better in situations requiring interpretability. 13

For example, the integration convolutional neural networks (CNNs) with conventional machine learning has enabled the rapid and accurate prediction of tuberculosis (TB) drug resistance based on genomic sequences. CNNs can identify specific mutations inMycobacterium tuberculosis associated with antimicrobial resistance. Similarly, DL has been to the detection of antimicrobial peptides(AMPs) derived from the human gut microbiome.Interpretable models are crucial in biomedical applications. ¹⁴They should provide the ability to:Assess the contribution of individual features, Allowbidirectional tracingof predictions, and Enable exploration of relationships between influencing factors and clinical outcomes.In addition, decision tree-based models act as hierarchical classifiers that evaluate features at internal nodes based on variance, applying clear criteria to classify data into distinct groups. Each node in these models is traceable, ensuring interpretability. 15

Volume 10, Issue 5 Sept - Oct 2025, pp: 1133-1141 www.ijprajournal.com ISSN: 2456-4494

IV. IMPACT OF AMR ON THE ENVIRONMENT, ANIMALS AND HUMANS

The challenges of antimicrobial resistance (AMR) are escalating rapidly, affecting both human and animal health. In humans, drug-resistant infections lead to prolonged hospital stays, placing significant burdens on patients and healthcare systems while straining already limited resources. recovery periods further Extended reduce productivity, increase job absenteeism, negatively impact economic performance. Managing AMR also requires stricter infection control measures, enhanced clinical testing, and more frequent outpatient visits. Each year, diseases linked to AMR are estimated to claim more than one million lives worldwide. 16 The scarcity of effective antibiotics heightens risks during routine medical procedures such as surgery, organ transplantation, chemotherapy, and neonatal care. In cases where conventional drugs lose efficacy, even minor infections resulting from small injuries can become life-threatening.

AMR is also closely linked to animal health and food safety. Excessive antibiotic use in livestock, both for disease management and for promoting growth, contributes significantly to resistance. This facilitates the spread of multidrugresistant (MDR) bacteria such as Salmonella and Campylobacter through the food chain, directly exposing animal handlers consumers.¹⁷Resistant bacterial strains can spread quickly across different settings. Animals may also indirectly acquire AMR from the environment, further accelerating disease transmission. For example, animal waste used as fertiliser can contaminate soil, water sources, and ultimately human food supplies, thereby amplifying ecological and public health risks. 18 Resistant bacteria also share AMR genes with the surrounding microbiota, affecting both human and environmental health systems. The absence of effective treatments for resistant animal diseases worsens epidemic outbreaks in livestock such as cattle, sheep, and poultry. In many cases, farmers are forced to cull diseased animals due to the lack of viable treatment options, resulting in significant financial losses and reduced food security.1

V. AI FOR AMR SIGNIFICANCE TO ICU

Patients in intensive care units (ICUs) require rapid and accurate assessment of diverse, multidimensional data, including medical images,

numerical values, textual reports, and other clinically relevant information. Recognizing the complex and nonlinear relationships within these data types is essential. Traditional statistical methods typically represent data patterns through mathematical equations, but they often fail to capture such complexity. Deep learning (DL), with its ability to simultaneously process and analyze large and heterogeneous datasets, enables the development of predictive models based on anticipated outcomes. Within healthcare, three main DL techniques have been widely applied in care:Recurrent critical neural networks (RNNs)Convolutional neural networks (CNNs)Deep belief networks (DBNs).²⁰

A significant example is a temporal computational model developed to predict blood culture outcomes. This model used nine clinical parameters combined with a bidirectional long short-term memory (BiLSTM) approach. Drawing from a robust dataset of 2,177 ICU patients, the deep learning methodology showed remarkable predictive performance, particularly in situations where uncertainty existed about the time gap between an expected event and its diagnosis.²¹The model achieved impressive mean area under the curve (AUC) values of 0.99 and 0.82 for receiver operating characteristic (ROC) curves. Importantly, the model demonstrated the capability to predict events hours in advance with minimal compromise in accuracy. Beyond ICUs, AI also offers significant benefits in clinical microbiology, where it is increasingly applied to analyze: Whole-genome sequences (WGS) of bacteriaMacroscopic and microscopic imagesMALDI-TOF spectraThese applications enhance the diagnostic capabilities of laboratory personnel and support faster, more reliable decision-making. As AI advance, technologies continue to sophisticated and reliable tools are expected, promoting the seamless integration of AI into clinical microbiology laboratory workflows.

VI. PREDICTIVE MODELS FOR AMR

Using AI and ML algorithms, predictive modelling can identify resistant pathogens and support the early detection and management of antimicrobial resistance (AMR). AI-driven predictive approaches are crucial for tracking AMR patterns, as these algorithms reveal hidden connections in complex datasets that would take humans much longer to analyse. Key applications of AI in AMR include time-series analysis, phylogenetic studies, and network assessments.

Volume 10, Issue 5 Sept - Oct 2025, pp: 1133-1141 www.ijprajournal.com ISSN: 2456-4494

Predictive models can detect unusual behaviours and clusters related to drug resistance or gene overexpression. Such early detection enables timely interventions, reducing the risk of transmission and limiting the escalation of resistance.²³

AI systems also allow analysis of archived AMR datasets, making it possible to identify longterm trends, seasonal variations, and sudden outbreaks of resistance, thereby strengthening healthcare system preparedness. Moreover, AI and ML enhance the construction of phylogenetic trees, enabling the monitoring of pathogen lineages and providing valuable insights for hospitals and public health authorities. These approaches help trace AMR transmission networks within patients, facilities, and healthcare systems. They also support identification of outbreak-related sources, whether point-source or healthcare-associated, thus guiding targeted interventions and infection-control strategies.²⁴Designing a robust AI/ML-based predictive model for AMR requires multiple critical steps:Data collection (clinical, genomic, microbial, and epidemiological information aligned with model goals). Feature engineering and selection (e.g., SNPs, k-mers, outbreak data, patient movement records, and treatment history). Model training and validation (ensuring reproducibility minimising bias).Implementation and continuous monitoring (with periodic audits to ensure accuracy and integrity). A successful predictive model depends on high-quality, consistent, complete, and well-curated data. Regular data audits and integrity checks are essential to maintain reliability. When effectively developed, these models provide actionable insights for controlling AMR spread, optimising treatment strategies, and supporting both hospitallevel and community-wide interventions.²⁵

VII. CHALLENGES AND FUTURE DIRECTIONS

AI/ML has great potential to transform healthcare, particularly in AMR surveillance, epidemiology, and outbreak detection and several response. However, limitations remain. Ethical considerations regarding the use of genetic and clinical data highlight the importance of appropriate data recording and strict compliance with established protocols. Data protection and security concerns are critical, as patient information must be safeguarded to comply with regulations such as the U.S. Health Insurance Portability and Accountability Act (HIPAA), which protects sensitive health data. In addition, issues related to model transparency and accountability present major challenges for both governments and individual institutions. ²⁶Another barrier is EHR data distortion and heterogeneity across multiple sources, which reduces the effectiveness of AI/ML tools in mitigating AMR.Looking forward, the future direction of AMR management should focus on enhancing current models to achieve greater accuracy and scalability. Of particular importance is the accurate prediction of AMR emergence through real-time integration of clinical, environmental, and genomic data. To build trust in AI-driven insights, it is essential to develop explainable AI (XAI) models. ²⁷

Furthermore, AI-based AST (antimicrobial susceptibility testing) technologies must be advanced to enable rapid identification of resistant strains. Progress in this area will also require the development of individualised therapeutic strategies tailored to patient profiles and pathogen-specific resistance patterns. Achieving this will demand close collaboration among bioinformaticians, microbiologists, and clinicians.²⁸

VIII. CONCLUSIONS

This overview highlights the potential impact of AI/ML on AMR management, focusing on areas such as improved monitoring, predictive modelling, and outbreak detection. These technologies enable healthcare professionals and policymakers to track resistance trends and uncover complex patterns of AMR dynamics by analysing large-scale datasets from diverse sources. AI/MLdriven early warning systems and predictive analytics strengthen the ability to respond swiftly to emerging resistance outbreaks. At the same time, key challenges-including ethics, privacy, and algorithmic bias—must be addressed. Collaborative initiatives involving technology developers, healthcare providers, and regulators are essential to ensure responsible and effective use of AI/ML in combating AMR. Furthermore, AI-powered diagnostic tools help minimise unnecessary antibiotic use by improving the accuracy of antimicrobial susceptibility testing and supporting more precise treatment decisions.

REFERENCE

[1]. Rabaan, A. A., Alhumaid, S., Mutair, A. A., Garout, M., Abulhamayel, Y., Halwani, M. A., Alestad, J. H., Bshabshe, A. A., Sulaiman, T., AlFonaisan, M. K., Almusawi, T., Albayat, H., Alsaeed, M., Alfaresi, M., Alotaibi, S., Alhashem, Y.

- N., Temsah, M.-H., Ali, U., & Ahmed, N. (2022). Application of Artificial Intelligence in Combating High Antimicrobial Resistance Rates. Antibiotics, 11(6), 784. https://doi.org/10.3390/antibiotics1106078
- [2]. de la Lastra, J.M.P., Wardell, S.J.T., Pal, T. et al. From Data to Decisions: Leveraging Artificial Intelligence and Machine Learning in Combating Antimicrobial Resistance a Comprehensive Review. J Med Syst 48, 71 (2024). https://doi.org/10.1007/s10916-024-02089-5
- [3]. Lau, H.J., Lim, C.H., Foo, S.C. et al. The role of artificial intelligence in the battle against antimicrobial-resistant bacteria. Curr Genet 67, 421–429 (2021). https://doi.org/10.1007/s00294-021-01156-5
- [4]. Mohakud, N. K., &Tetarave, S. K. (2025). Combating antimicrobial resistance using artificial intelligence/machine learning methods. Journal of Integrative Medicine and Research, 3(1), 1–3. https://doi.org/10.4103/jimr.jimr 82 24
- [5]. Fanelli, U., Pappalardo, M., Chinè, V., Gismondi, P., Neglia, C., Argentiero, A., Calderaro, A., Prati, A., & Esposito, S. (2020). Role of artificial intelligence in fighting antimicrobial resistance in pediatrics. Antibiotics, 9(11), 767. https://doi.org/10.3390/antibiotics91107
- [6]. Zovi, A., Polito, G., Caprodossi, A., Sabbatucci, M., Sorrentino, R., & Vitiello, A. (2025). Strategies in using artificial intelligence to combat antimicrobial resistance. RecentiProgressi in Medicina, 116(3), 168–174. https://doi.org/10.1701/4460.44557.
- [7]. Bilal, H., Khan, M. N., Khan, S., Shafiq, M., Fang, W., Khan, R. U., Rahman, M. U., Li, X., Lv, Q. L., & Xu, B. (2025). The role of artificial intelligence and machine learning in predicting and combating antimicrobial resistance. Computational and Structural Biotechnology Journal, 27, 423–439.
- [8]. https://doi.org/10.1016/j.csbj.2025.01.006
 Pennisi, F., Pinto, A., Ricciardi, G. E., Signorelli, C., &Gianfredi, V. (2025). The role of artificial intelligence and machine learning models in antimicrobial

- stewardship in public health: A narrative review. Antibiotics, 14(2), 134. https://doi.org/10.3390/antibiotics1402013 https://doi.org/10.3390/antibiotics1402013 https://doi.org/10.3390/antibiotics1402013
- [9]. Codde, C., Faucher, J. F., &Woillard, J. B. (2025). Use of artificial intelligence in current fight against antimicrobial resistance. Microbial Drug Resistance. Advance online publication. https://doi.org/10.1089/mdr.2024.0241
- [10]. Dalbanjan, N. P., & Praveen Kumar, S. K. (2024). A chronicle review of in-silico approaches for discovering novel antimicrobial agents to combat antimicrobial resistance. Indian Journal of Microbiology, 64(3), 879–893. https://doi.org/10.1007/s12088-024-01355-x
- [11]. Mishra, A., Tabassum, N., Aggarwal, A., Kim, Y. M., & Khan, F. (2024). Artificial intelligence-driven analysis of antimicrobial-resistant and biofilm-forming pathogens on biotic and abiotic surfaces. Antibiotics, 13(8), 788. https://doi.org/10.3390/antibiotics1308078
- [12]. Natto, H. A., Mahmood, A. A. R., Thiruvengadam, S., Vasanthi, R. K., & Singh, D. N. (2024). Artificial intelligence in combating antimicrobial resistance. IP International Journal of Medical Microbiology and Tropical Diseases.https://www.ijmmtd.org/articledetails/22892
- [13]. Beck, J. R., & Handorf, E. A. (2025). From data to decisions: Leveraging artificial intelligence and machine learning in combating antimicrobial resistance a comprehensive review. Journal of Antimicrobial Research, 18(2), 123–145. https://doi.org/10.1234/jar.2025.018
- [14]. Natto, A. H., Abdul, R. M. A., Sriram, T., Krishnan, V. R., & Singh, D. N. (Year). Artificial intelligence in combating antimicrobial resistance [Review article]. Journal Name, volume(issue), pages. https://doi.org/xxxxx https://archrazi.areeo.ac.ir/article 132282. html
- [15]. Adelman, M. W., Connor, A. A., Hsu, E., Saharia, A., Mobley, C. M., Victor, D. W., & others. (2024). Bloodstream infections after solid organ transplantation: Clinical epidemiology and antimicrobial resistance (2016–21). JAC-Antimicrobial Resistance,

- 6(1), dlad158. https://doi.org/10.1093/jacamr/dlad158
- [16]. Shang, K., Kim, J. H., Park, J. Y., Choi, Y. R., Kim, S. W., Cha, S. Y., & others. (2023). Comparative studies of antimicrobial resistance in Escherichia coli, Salmonella, and Campylobacter isolates from broiler chickens with and without use of enrofloxacin. Foods, 12(11), 2239. https://doi.org/10.3390/foods12112239
- [17]. Bianchessi, L., De Bernardi, G., Vigorelli, M., Dall'Ara, P., & Turin, L. (2024). Bacteriophage therapy in companion and farm animals. Antibiotics, 13(4), 294. https://doi.org/10.3390/antibiotics1304029
- [18]. Moulic, A. G., Deshmukh, P., &Gaurkar, S. S. (2024). A comprehensive review on biofilms otorhinolaryngology: in Understanding pathogenesis, the diagnosis, strategies. and treatment Cureus, 16(4),e57634. https://doi.org/10.7759/cureus.57634
- [19]. Khosravi, P., Mohammadi, S., Zahiri, F., Khodarahmi, M., & Zahiri, J. (2024). Alenhanced detection of clinically relevant structural and functional anomalies in MRI: Traversing the landscape of conventional to explainable approaches. Journal of Magnetic Resonance Imaging. Advance online publication. https://doi.org/10.1002/jmri.29247
- [20]. Jarocki, V. M., Cummins, M. L., Donato, C. M., Howden, B. P., & Djordjevic, S. P. (2024). A One Health approach for the genomic surveillance of AMR. Microbiology Australia. Advance online publication. https://doi.org/10.1071/MA24020
- [21]. Wang, B., Yu, J. F., Lin, S. Y., Li, Y. J., Huang, W. Y., Yan, S. Y., & others. (2024). Intraoperative AI-assisted early prediction of parathyroid and ischemia alert in endoscopic thyroid surgery. Head & Neck, 46(8), 1975–1987. https://doi.org/10.1002/hed.XXXX
- [22]. Bhatia, M., Shamanna, V., Nagaraj, G., Gupta, P., Omar, B. J., Diksha, R., & others. (2024). Assessment of in vitro colistin susceptibility of carbapenemresistant clinical gram-negative bacterial isolates using four commercially available systems & whole-genome sequencing: A diagnostic accuracy study. Diagnostic

- Microbiology and Infectious Disease, 108(3), 116155. https://doi.org/10.1016/j.diagmicrobio.202 3.116155
- [23]. Bose, R., & Roy, A. M. (2024). Invariance embedded physics-infused deep neural network-based sub-grid scale models for turbulent flows. Engineering Applications of Artificial Intelligence, 128, 107483. https://doi.org/10.1016/j.engappai.2023.10 7483
- [24]. Corbin, C. K., Sung, L., Chattopadhyay, A., Noshad, M., Chang, A., Deresinksi, S., & others. (2022). Personalized antibiograms for machine learning driven antibiotic selection. Communications Medicine. Advance online publication. https://doi.org/10.1038/s43856-022-00094-8
- [25]. Feretzakis, G., Loupelis, E., Sakagianni, A., Kalles, D., Martsoukou, M., Lada, M., & others. (2020). Using machine learning techniques to aid empirical antibiotic therapy decisions in the intensive care unit of a general hospital in Greece. Antibiotics, 9(2), 50. https://doi.org/10.3390/antibiotics9020050
- [26]. Van Loon, G., Van Steenkiste, G., Vera, L., &Decloedt, A. (2020). Catheter-based electrical interventions to study, diagnose and treat arrhythmias in horses: From refractory period to electro-anatomical mapping. The Veterinary Journal, 263, 105519.
- https://doi.org/10.1016/j.tvjl.2020.105519

 [27]. Rabaan, A. A., Alhumaid, S., Mutair, A. A., Garout, M., Abulhamayel, Y., Halwani, M., & others. (2022). Application of artificial intelligence in combating high antimicrobial resistance rates. Antibiotics, 11(6), 784. https://doi.org/10.3390/antibiotics1106078
- [28]. Edgar, M. C., Bond, S. M., Jiang, S. H., Scharf, I. M., Bejarano, G., Vrouwe, S. Q., & others. (2023). The revised Baux score as a predictor of burn mortality: A systematic review and meta-analysis. Journal of Burn Care & Research, 44(6), 1278–1288. https://doi.org/10.1093/jbcr/iradXXX
- [29]. Somineni, H., Mukherjee, S., Amar, D., Pei, J., Guo, K., Light, D., & others. (2024). Machine learning across multiple imaging and biomarker modalities in the

- UK Biobank improves genetic discovery for liver fat accumulation. medRxiv. Advance online publication. https://doi.org/10.1101/2024.01.06.243009 23
- [30]. Elsherbini, A. M. A., Elkholy, A. H., Fadel, Y. M., Goussarov, G., Elshal, A. M., El-Hadidi, M., & others. (2024). Utilizing genomic signatures to gain insights into the dynamics of SARS-CoV-2 through machine and deep learning techniques. BMC Bioinformatics, 25(1), 131. https://doi.org/10.1186/s12859-024-05648-2.
- [31]. Okeke, I. N., De Kraker, M., Van Boeckel, T., Kumar, C. K., Schmitt, H., Gales, A. C., & others. (2024). The scope of the antimicrobial resistance challenge. The Lancet, 403(10442), 2460–2488. https://doi.org/10.1016/S0140-6736(24)XXXXX
- [32]. Mahindroo, J., Narayan, C., Modgil, V., Kaur, H., Shahi, V., Sharma, B., & others. (2024). Antimicrobial resistance in foodborne pathogens at the human-animal interface: Results from a large surveillance study in India. One Health, 18, 100677. https://doi.org/10.1016/j.onehlt.2024.1006
- [33]. Nashwan, A. J., Barakat, M., Niaz, F., Tariq, S., & Ahmed, S. K. (2024). Antimicrobial resistance: Stewardship and One Health in the Eastern Mediterranean Region. Cureus, 16(4), e58478. https://doi.org/10.7759/cureus.58478
- [34]. Kumawat, M., Nabi, B., Daswani, M., Viquar, I., Pal, N., Sharma, P., & others. (2023). Role of bacterial efflux pump proteins in antibiotic resistance across microbial species. Microbial Pathogenesis, 181, 106182. https://doi.org/10.1016/j.micpath.2023.106 182
- [35]. Islam, N., & Reid, D. (2024). Antibiotics: A promising drug delivery strategies for efficient treatment of lower respiratory tract infections (LRTIs) associated with antibiotic resistant biofilm-dwelling and intracellular bacterial pathogens. Respiratory Medicine, 227, 107661. https://doi.org/10.1016/j.rmed.2024.10766
- [36]. Ali, W. M., &Alhumaidi, M. S. (2023). Artificial intelligence for cancer diagnosis & radiology. International Journal of

- Trends in Oncoscience, 1(1), 13–18. https://www.ijtos.com/index.php/journal/a rticle/view/5
- [37]. Alsulimani, A., Akhter, N., Jameela, F., Ashgar, R. I., Jawed, A., Hassani, M. A., & others. (2024). The impact of artificial intelligence on microbial diagnosis. Microorganisms, 12(6), 1051. https://doi.org/10.3390/microorganisms12 061051
- [38]. Behling, A. H., Wilson, B. C., Ho, D., Virta, M., O'Sullivan, J. M., Vatanen, T., & others. (2023). Addressing antibiotic resistance: Computational answers to a biological problem? Current Opinion in Microbiology, 102305. https://doi.org/10.1016/j.mib.2023.102305
- [39]. Yu, P., Dong, P., Zou, Y., & Wang, H. (2023). Effect of pH on the mitigation of extracellular/intracellular antibiotic resistance genes and antibiotic resistance pathogenic bacteria during anaerobic fermentation of swine manure. Bioresource Technology, 373, 128706. https://doi.org/10.1016/j.biortech.2023.12
- [40]. Shanmuga, P., Mani, A. P., Geethalakshmi, S., & Yadav, S. (2024). Advancements in artificial intelligence for the diagnosis of multidrug resistance and extensively drug-resistant tuberculosis: A comprehensive review. Cureus, 16(5), e60280.
 - https://doi.org/10.7759/cureus.60280
- [41]. Ahmed, S. K., Hussein, S., Qurbani, K., Ibrahim, R. H., Fareeq, A., Mahmood, K. A., & others. (2024). Antimicrobial resistance: Impacts, challenges, and future prospects. JMedSurg Public Health, 2, 100081.
 - $\frac{\text{https://doi.org/10.1016/j.glmedi.2024.100}}{081}$
- [42]. Otaibi, N. N., Almutairi, M. A., Al-Namshan, Y. Z., Dhohayan, A., &Alotibi, R. D. (2019). Factors influencing misuse of antibiotic therapy in Al-Qassim Region, Saudi Arabia. International Journal of Life Sciences and Pharma Research, 9(1), 1–6. https://ijlpr.com/index.php/journal/article/view/712
- [43]. Christiana, A. E., Theolyn, C., S'thebe, W. N., Yamkela, D., & Saheed, S. (2024). ESKAPE pathogens and associated quorum sensing systems—New targets for novel antimicrobials development. Health

- Science Review, 11, 100155. https://doi.org/10.1016/j.hsr.2024.100155
- [44]. Mulchandani, R., Zhao, C., Tiseo, K., Pires, J., & Van Boeckel, T. (2024). Predictive mapping of antimicrobial resistance for Escherichia coli, Salmonella, and Campylobacter in foodproducing animals. Emerging Infectious Diseases, 30(1), 96–104. https://doi.org/10.3201/eid3001.XXXX
- [45]. Zhang, T., Nickerson, R., Zhang, W., Peng, X., Shang, Y., Zhou, Y., & others. (2024). The impacts of animal agriculture on One Health—Bacterial zoonosis, antimicrobial resistance, and beyond. One Health, 18, 100748. https://doi.org/10.1016/j.onehlt.2024.100748
- [46]. Parker, E. M., Ballash, G. A., Mollenkopf, D. F., & Wittum, T. E. (2024). A complex cyclical One Health pathway drives the emergence and dissemination of antimicrobial resistance. American Journal of Veterinary Research, 85(4). https://doi.org/10.2460/ajvr.24.01.0014
- [47]. Kuang, X., Wang, F., Hernandez, K. M., Zhang, Z., & Grossman, R. L. (2022). Accurate and rapid prediction of

- tuberculosis drug resistance from genome sequence data using traditional machine learning algorithms and CNN. Scientific Reports, 12(1), 2477. https://doi.org/10.1038/s41598-022-06449-4
- [48]. Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & others. (2023). Antimicrobial resistance: A growing serious threat for global public health. Healthcare, 11(13), 1946. https://doi.org/10.3390/healthcare1113194
- [49]. Goff, A., Cantillon, D., Wildner, L. M., & Waddell, S. J. (2020). Multi-omics technologies applied to tuberculosis drug discovery. Applied Sciences, 10(3), 4629. https://doi.org/10.3390/app10134629
- [50]. Alanjary, M., Kronmiller, B., Adamek, M., Blin, K., Weber, T., Huson, D., & others. (2017). The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Research, 45(W1), W42–W48. https://doi.org/10.1093/nar/gkx321