

AI-powered Industrial Pharmacy: From Research to Manufacturing

¹Dr Naveen Shivavedi, ²Dr Siddharth Verma

¹Dr Naveen Shivavedi, Associate Professor, Shri Ram Group of Institutions, Jabalpur M.P.

²Dr Siddharth Verma, Professor, Dr Bhagat Singh Rai College of Pharmacy, Seoni, M.P.

Date of Submission: 14-12-2025

Date of acceptance: 28-12-2025

Abstract

Artificial intelligence (AI) and machine learning (ML) are transforming industrial pharmacy by accelerating research, improving formulation design, enabling data-driven process development, and automating manufacturing and quality assurance. This review synthesizes recent advances across discovery, formulation, Process Analytical Technology (PAT), digital twins, continuous manufacturing, robotics/vision inspection, predictive maintenance, and regulatory landscapes. We highlight successful use-cases, technical enablers, data and integration challenges, and regulatory considerations. Finally, we outline gaps and propose a roadmap for the responsible, GMP-compliant deployment of AI from lab to plant floor.

Keywords: artificial intelligence, machine learning, process analytical technology, digital twin, continuous manufacturing, quality by design, predictive maintenance, pharmaceutical manufacturing

I. Introduction

The pharmaceutical industry generates large, heterogeneous data — high-throughput screening, formulation experiments, process sensor streams, PAT spectra, and batch records — that are increasingly suitable for AI/ML methods. Industry 4.0 technologies (connectivity, sensors, cloud/edge compute) plus growth in continuous manufacturing and PAT create opportunities for AI to enable Quality by Design (QbD), real-time release testing (RTRT), and predictive operations. This review surveys the state of the art and synthesizes technical, operational, and regulatory perspectives.

II. AI in Research and Development

2.1 Drug discovery and preclinical optimization

AI has accelerated target identification, virtual screening, and ADMET predictions; large pharma investments (e.g., partnerships between pharma and

AI/compute providers) demonstrate industry uptake. These developments shorten timelines and prioritize candidates that are more manufacturable.

2.2 Formulation design and optimization

ML models (random forests, gradient boosting, neural networks) predict formulation properties (e.g., dissolution, stability, release kinetics) using experimental and mechanistic features, enabling in-silico screening that reduces experimental burden. Examples include ML-guided liposomal and nanoparticle formulation work and ML approaches applied to liposomal and complex formulations.

2.3 Additive manufacturing and microfluidics for personalized products

AI assists parameter selection and defect detection in 3D printing and microfluidic fabrication for personalized medicines, enabling closed-loop optimization of print parameters and material feed.

III. Process Development, PAT, and Scale-up

3.1 Process Analytical Technology (PAT) enhanced by AI

PAT instruments (NIR, Raman, HPLC-on-line) produce continuous data streams. ML converts this data into predictive models for content uniformity, blend homogeneity, granule size, moisture and other CQAs, improving endpoint detection and enabling RTRT. Hybrid approaches combining mechanistic models and ML frequently yield robust, interpretable solutions.

3.2 Digital twins and in-silico process models

Digital twins—virtual replicas of processes—use first-principles models augmented by ML for state estimation, what-if scenario simulation, and fault injection for operator training. Digital twins support scale-up decisions and can run “virtual batches” to reduce risk during technology transfer.

3.3 Model-based control and advanced MPC

Deep learning and ML-assisted model predictive control (MPC) have been demonstrated for continuous wet-granulation and integrated continuous lines, enabling control of nonlinear, interacting variables and improving process robustness.

IV. Manufacturing Floor: Continuous Manufacturing, Robotics, and Vision Systems

4.1 Continuous manufacturing + AI

Continuous manufacturing creates dense time-series data; AI enables rapid fault detection, adaptive set-point optimization, and yield maximization. Combined with PAT, continuous setups are ideal for ML-based soft sensors and closed-loop control.

4.2 Computer vision and automated inspection

AI-powered computer vision systems replace manual visual inspection for defects, particulate detection, and packaging errors, offering higher throughput and consistent sensitivity. Several vendors and industrial case studies illustrate adoption in vial/ampoule inspection and packaging lines.

4.3 Robotics and automation

Robotic automation (material handling, aseptic filling, packaging) integrated with AI scheduling and anomaly detection increases safety and throughput and reduces contamination risk in sterile manufacturing.

V. Quality Assurance, Predictive Maintenance, and Supply Chain

5.1 Predictive maintenance and reliability engineering

ML models trained on equipment telemetry predict failures, enabling condition-based maintenance, reducing downtime, and optimizing spare parts inventory. Such systems have been successfully deployed across manufacturing sectors and are increasingly tailored to GMP environments.

5.2 Digital quality records and automated deviation analysis

Natural language processing (NLP) aids triage of quality events, CAPAs, and complaint narratives; anomaly detection in electronic batch records flags outliers for QA review.

VI. Regulatory, Validation and GMP Considerations

6.1 Regulatory guidance and expectations

Regulators emphasize transparency, traceability, and pre-specified change control for AI/ML systems used in regulated contexts. FDA discussion papers and guidance for AI/ML (particularly for medical devices and SaMD) outline expectations for model management, algorithm change protocols, and total product lifecycle approaches; similar principles can be applied to AI used in manufacturing. Regulatory bodies are also exploring frameworks for adaptive algorithms that learn post-deployment.

6.2 Validation, explainability and data quality

ML systems must be validated with representative datasets, documented data provenance, and performance metrics. Hybrid models (mechanistic + ML) and explainable AI (XAI) methods help satisfy interpretability requirements and support root-cause investigations.

6.3 Cybersecurity and data integrity

Connected AI systems require robust cybersecurity controls, access management, and audit trails to protect data integrity and patient safety. Regulatory inspections are beginning to address digital risk in GMP contexts.

VII. Practical Challenges and Limitations

1. **Data challenges:** heterogeneous formats, missing labels, small batch sizes for rare products, and biased historical data limit model generalizability.
2. **Integration complexity:** legacy equipment and proprietary control systems increase integration cost; edge vs cloud compute trade-offs affect latency and data residency.
3. **Regulatory uncertainty:** while guidance exists, industry seeks harmonized standards for AI in GMP settings.
4. **Skill gaps:** shortage of staff versed in both pharmaceutical science and ML/engineering slows adoption.

VIII. Case Studies & Industry Examples

- **Large pharma + supercomputing/AI platforms:** Recent examples show major pharma collaborating with AI/compute providers to accelerate R&D and support manufacturing analytics.
- **Digital twin pilot projects:** Academic and industry pilots demonstrate digital twin value for process debugging and predictive maintenance.

- **NIR + ML PAT implementations:** NIR spectroscopy coupled with ML models has been applied successfully to blending, granulation and HME monitoring for RTRT.

IX. Future Directions and Research Priorities

1. **Federated learning and privacy-preserving models** to enable cross-company model improvement while protecting IP and data privacy.
2. **Standardized data schemas and digital signatures** to improve data interchange between labs and plants.
3. **Regulatory-friendly model change control frameworks** (algorithm change protocols) to allow safe adaptive models.
4. **Interpretable hybrid models** blending mechanistic knowledge with ML to improve trust and regulatory acceptance.
5. **AI for sustainability** — energy optimization, waste reduction, and carbon accounting integrated with process control.

X. Conclusion

AI is reshaping industrial pharmacy across the product lifecycle — from in-silico formulation screening to PAT-driven real-time control and predictive plant operations. Adoption requires investments in data infrastructure, cross-disciplinary teams, and adherence to evolving regulatory expectations. With careful validation, explainability, and lifecycle governance, AI can deliver measurable gains in quality, productivity, and flexibility for pharmaceutical manufacturing.

References

- [1]. Vora LK, et al. *Artificial Intelligence in Pharmaceutical Technology and Drug Development*. 2023. PMC.
- [2]. U.S. Food and Drug Administration. *Artificial Intelligence in Drug Manufacturing (FDA examples & discussion)*. 2023 PDF.
- [3]. FDA. *Artificial Intelligence-Enabled Medical Devices (AI-Enabled Medical Device List)*. 2025.
- [4]. Chen Y, et al. *Digital Twins in Pharmaceutical and Biopharmaceutical Manufacturing*. MDPI Processes. 2020.
- [5]. Bannigan P, et al. *Machine learning directed drug formulation development*. 2021. ScienceDirect.
- [6]. Matalqah S, et al. *Machine Learning in Liposomal Formulation & Development*. PubMed.
- [7]. Djuris J, et al. *Review of ML algorithms' application in pharmaceutical technology*. ResearchGate/seminal works.
- [8]. Kim EJ, et al. *Process Analytical Technology Tools for Monitoring Pharmaceutical Manufacturing Processes*. PMC. 2021.
- [9]. Sacré PY. *PAT Applications of NIR Spectroscopy in the Pharmaceutical Industry*. Wiley chapter. 2021.
- [10]. Muthudoss P. *Machine Learning-Enabled NIR Spectroscopy in Pharma*. AAPS PharmSciTech 2022.
- [11]. Panjwani S, et al. *AI and machine learning-assisted digital manufacturing*. AIChE/Bioprocess reviews.
- [12]. Rezazadeh M. *Current state of ML implementation in oral solid dosage manufacturing*. 2025. ScienceDirect.
- [13]. Dosta M, et al. *Machine learning real-time control of continuous wet-granulation*. 2025. ScienceDirect.
- [14]. ISPE. *Continuous Manufacturing review & perspectives*. Industry guidance/publication.
- [15]. ResearchGate/Review. *Digital twin reviews and applications in pharma (2024–2025)*.
- [16]. NEXOCode. *Process Analytical Technology (PAT) and AI in Biopharma Manufacturing*. 2021 blog/explainer.
- [17]. Shastri A. *Application of AI as a process tool in pharma*. JMPAS 2024.
- [18]. Research articles on robotics and automation in pharma (reviews 2023–2025).
- [19]. PDA article. *Human-like vision robot AI for inspections*. 2024.
- [20]. Niazi SK, et al. *Regulatory perspectives for AI/ML implementation in GMP settings*. PMC 2025.
- [21]. Sacré PY / Wiley chapter on portable NIR and PAT.
- [22]. Spectroscopy Online. *Advancing NIR and ML for personalized medicine*. 2025.
- [23]. Research on ML in additive manufacturing for drug delivery systems. 2023 review.
- [24]. FDA discussion paper. *Proposed regulatory framework for modifications to AI/ML-enabled devices*.
- [25]. Recent news / industry moves: Eli Lilly collaborations and investments in AI/supercomputing for drug R&D and manufacturing (2025). Reuters.

- [26]. European Pharmaceutical Review news on AI digital twin platforms for pharma manufacturing.
- [27]. Recent conference/review articles on PAT advances and ML integration (2024–2025).