

A Comprehensive Review on Phytochemical and Medicinal Properties of *Tagetes Erecta* (Marigold)

Sonal Balasaheb Bangar^{*1}, Dnyaneshwari Bappa Misal², Sakshi Sunil Gaikwad³, Abhishek Sanjay Masal⁴, Soham Sunil Lad⁵, Parag Ganesh Bayaskar⁶ and Dr. Shruti D. Patil⁷

TMV's Lokmanya Tilak Institute of Pharmacy, Kharghar, NaviMumbai, Maharashtra, India, 410210.

Date of Submission: 15-01-2025

Date of Acceptance: 25-01-2025

ABSTRACT: *Tagetes erecta*, commonly known as Marigold, has been referred for its medicinal and cosmetic properties for centuries. Its flower extracts have been utilized in traditional medicine and skincare rituals for their anti-inflammatory, antioxidant, and antimicrobial properties. This review aims to summarize the current state of knowledge on the cosmetic applications of *Tagetes erecta* flower extracts, focusing on topical uses. The phytochemical constituents of Marigold, including flavonoids, terpenoids, and carotenoids, have been shown to protect the skin against UV-induced damage and oxidative stress, soothe irritated skin, and exhibit antimicrobial activity against acne-causing bacteria. The cosmetic industry can leverage Marigold's versatile properties to address various skin and hair concerns through innovative formulations. Future research directions include investigating Marigold's synergistic effects with other natural ingredients and assessing its stability and efficacy in commercial products.

The potential benefits of Marigold extracts in cosmetic applications underscore the need for further investigation, paving the way for sustainable, natural, and effective skincare solutions. Exploring Marigold's cosmetic potential can facilitate the development of natural and effective skincare products.

Keywords: *Tagetes erecta*, anti-oxidant, traditional medicine, ayurvedic, anti-inflammatory, phytochemical constituents

I. INTRODUCTION

Tagetes is a term used to describe periodically or fragile, largely herbal products which belongs from the (Asteraceae) family, which includes sunflowers. In 1753, Linnaeus defined it as an organizational structure. The salutary effect of this

herbal plant generally possesses a wide range of secondary metabolites produced in the compounds similar as glycosides, alkaloids, flavonoids, tannins, carotenoids etc.¹

The remedial value of *Tagetes erecta*, generally known as Marigold, has been honored in different systems of traditional drug for the treatment of different mortal affections. Natural products of plant have been used throughout the traditional history for various purposes. Numerous of these natural products have natural exertion that can involve in medicine discovery and medicine design. The Indian system of drug known as "Ayurveda" uses substantially factory-grounded medicines or phrasings to treat various affections, including cancer. Herbal medicines have great growth eventually in the global request. Exploration work on the chemistry of natural products, pharmacognosy, pharmaceutics, pharmacology and clinical rectifiers have been carried out on herbal medicines and utmost of the leading pharmaceutical pots have revised their strategies in favour of natural products. Numerous herbal remedies collectively or in combination have been recommended in different medical courses for the cure of different conditions. For cosmetic applications, we also observed their antioxidant, tyrosinase inhibitory and anti-inflammatory activities involving the prevention of skin aging or skin whitening.² The native approach of delivering healthcare uses a variety of plant species and naturally produced compounds from plants to treat infectious disorders. The main driving force for the use of herbs as antibacterial sources has been the rise in drug resistance in human illnesses to widely used as an antibiotic.³ The leaves are said to be beneficial for wounds, ulcers, renal problems, muscle aches, and piles. Boils and carbuncles are treated externally with the pulverised leaves. The area of herbal medicine has

experienced exponential expansion in the previous few decades. It is becoming more well-known in both developed and developing nations because of its natural origin and little negative effects.⁴ *Tagetes erecta* plants range in height from 0.1 to 2.2 m and have multiple branches. The flowers are big and vary in colour depending on the variety. Flowers come in a variety of yellow and orange tints, including light yellow, golden yellow, bright yellow, deep orange, and bright orange. Although *Tagetes* species thrive in nearly any type of soil, they prefer soil with adequate drainage. Marigold is a popular plant due to its easy cultural practices, adaptability, abundant flowering, long blooming time, problem-free nature, appealing colours, form, size, and acceptable storage quality. Marigolds are commonly used to make garlands during religious occasions. Flowers can be used for a variety of purposes, including wreaths, floral décor, flower baskets, cut flowers, bedding and potting, and product manufacturing. Marigold has the ability to provide natural products utilised in pharmaceuticals, such as meal producing goods, colourant preparation, oil extraction, & pigment extraction (particularly xanthophylls).⁵

➤ **Morphological characteristics -**

Although there are some perennial bushes, *Tagetes* species are usually fragrant, annual plants. Some of their morphological characteristics are: -

a) **Stems:** Upright, branching, and frequently tall depends on the species, from 0.1- 2.0 meters.

- b) **Leaves:** Sharply complex leaves, featuring leaflets that have curved edges and ranges from lanceolate to linear-lanceolate. There are oil glands on the leaves that release a distinct, pungent smell when crushed.
- c) **Flowers:** Arranged in flower heads, or capitula. This can be found apart or in corymbs. The ray Traditionally are yellow, orange, or multicolored, flowers whereas disk florets are typically orange or yellow.
- d) **Seeds:** Long, black achenes, frequently with two to three retrorsely thorny leaf blades which rise from the pappus.⁶

II. BOTANICAL DESCRIPTION (T. ERECTA)

Widely used garden plants like marigolds are upright, branching, and quite coarse, reaching a height of around one meter. But there are also miniature or short forms. The leaves have cutting edges and severe incisings. Solitary, long-stalked, and thickening upward flower heads are present. The blooms are orange, brownish-yellow, or brilliant yellow.⁷

2.1 Synonyms -

Tagetes erecta has various synonyms and regional names. It is usually referred to as the African marigold or Aztec marigold. These are below some *Tagetes erecta*'s main botanical and common synonyms -

Figure no.1. African marigold

Figure no.2. Aztec marigold

Figure no.3. Mexican marigold

1. African Marigold
2. Aztec Marigold
3. Mexican Marigold¹

2.2 Taxonomical Classification -

Scientific classification of *T. erecta* L as follows: -

Kingdom: Plantae,

Order: Asterales

Family: Asteraceae

Genus: *Tagetes*

Species: *T. erecta*

Binomial name: *T. erecta* L¹

2.3 Geographical distribution and habitat:

The most common *Tagetes* are African marigold, scientifically known as *Tagetes erecta* L. The title *Tagetes* is begun from the title of the Etruscan Tages. It has a place to a Asteraceae family and *tagetes* sort, containing almost 50 species. They develop up to 50-80 cm in stature, the clear out are green, lanceolate and between 5 - 17 cm in length. The leaves and stems are secured with little hairs, the edges of the leaf can be wavy.

This plant needs temperatures between 20°C-30°C and blossoms develop expansive sum every year in winter and precipitation seasons. It is a herb, commonly known as marigold, local of Mexico and other hotter parts of America and develops too in the tropics and subtropics regions. The plant is locally known as Genda Phool.

Truly, marigold has been utilized all over India, Indonesia and China as a flavor, therapeutic operator and fancy reason. In India, these were presented by the Portuguese. Marigold flowers have distinctive colors like yellow and orange being the most common. The Marigolds spread rapidly since of the ease in development, longer blossoming period and lovely flowers with fabulous rack life. They are broadly utilized for making garlands, religious give up and shows. *Tagetes erecta* L. is utilized for the treatment of a different of maladies. It is utilized as a nematocide, restorative and restorative specialist. The essential oil of the blossom contains cancer prevention agents.⁸

III. SIX IMPORTANT SPECIES OF GENUS TAGETES -

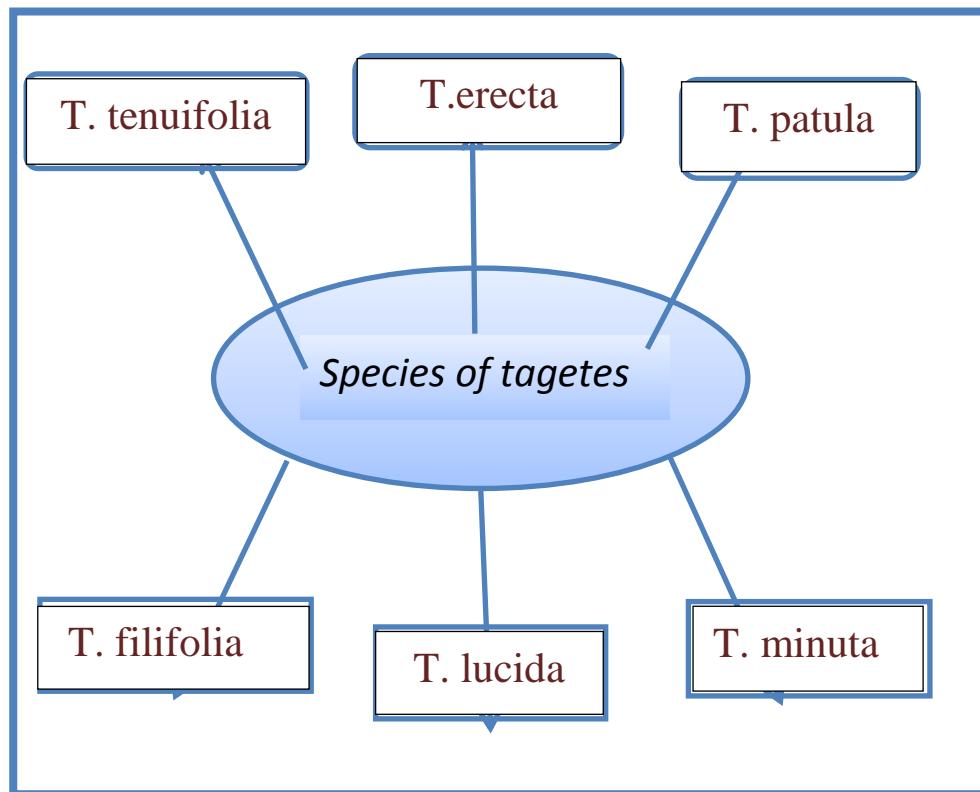


Figure no.4. Most important species of Genus tagetes⁹

IV. PHYTOCHEMICAL COMPOSITION

The plant *Tagetes erecta*, commonly referred to as marigold, is a major source of flavonoids, carotenoids, terpenoids, and essential oils, among other phytochemicals. Many of its therapeutic qualities, such as its antibacterial, anti-inflammatory, antioxidant, and anticancer effects, are attributed to these bioactive chemicals. An extensive list of the main phytochemicals (bioactive compounds) present in *Tagetes erecta* is presented below⁶.

4.1. Carotenoids - The most important bioactive compounds in *Tagetes* species is carotenoids, particularly in *T. erecta*. The flower petals are especially rich in these pigments.¹⁰

A. Lutein and zeaxanthin - In *Tagetes erecta*, the two main carotenoids are "lutein" and "zeaxanthin". These substances are widely recognized for their ability to lower the risk of age-related macular degeneration, therefore improving eye health.¹⁰

B. β -carotene - Another significant carotenoid with antioxidant properties is " β -carotene", which also acts as a precursor to vitamin A.¹⁰

4.2 Flavonoids - Another important constituent of bioactive compounds in *Tagetes* species are flavonoids, which provides antioxidant and anti-inflammatory properties.¹¹

A. Quercetin and kaempferol - *Tagetes erecta* has a significant number of flavonoids, including as quercetin and kaempferol, which support the plant's anti-inflammatory and antioxidant properties. Both quercetin and kaempferol have been investigated for their potential anticancer effects and are known to prevent cells from oxidative stress.¹¹

B. Coumarins and Tannins - Small amounts of coumarins and tannins are also found, which are added in the plant's astringent and antibacterial qualities.¹¹

4.3. Essential Oils - *Tagetes* species' essential oils are complicated combinations of volatile

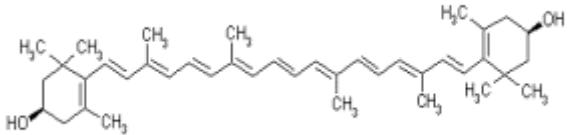
substances, mostly terpenes and terpenoids. The arrangement can differ widely between species and even within those species that are based on their geographic location and Environmental components.⁶

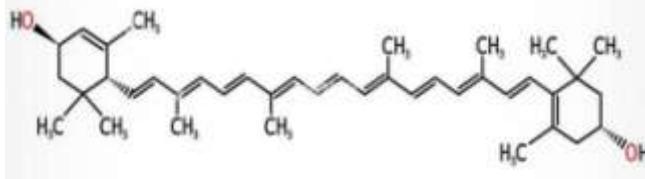
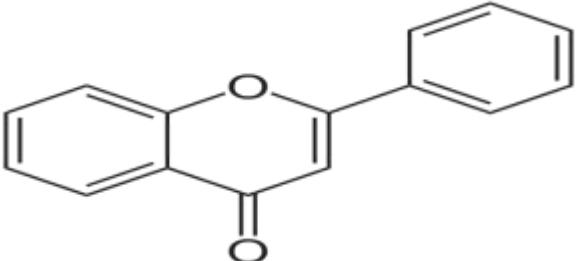
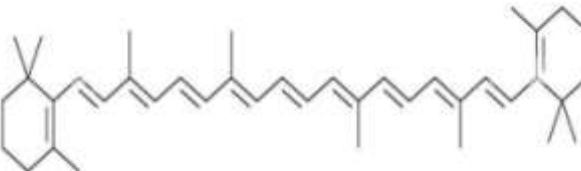
A. Tagetes minuta: Usually comprised of tagetone, tagetenone, dihydrotagetone, and ocimene.⁶

B. Tagetespatula: Most commonly has elevated concentrations of piperitenone, limonene, and piperitone.⁶

C. Tagetes erecta: Distinguished by elevated levels of dihydrotagetone, limonene, and (Z)- β -ocimene.⁶

4.4 Chemical constituents -


The majority chemical compounds, including thiophenes, flavonoids, carotenoids, and essential oils, have been isolated as a result of phytochemical investigations conducted on its various elements.¹²




Research has indicated that *T. erecta* is linked to several biomolecules, including phenolics, syringic acid, methyl-3, 5-dihydroxy-4-methoxybenzoate, quercetin, thieryl and ethyl gallate, and quercetagetin glucoside. The leaves are said to be beneficial for wounds, ulcers, kidney problems, muscle aches, and piles. Boils and carbuncles are treated externally with the pulverized leaves. It is said to possess analgesic, antimycotic, and antioxidant properties. GC-MS analysis has found 18 active chemicals, many of which are terpenoids.¹⁹⁻²¹ The flower is used in Ayurvedic medicine to treat fevers, epileptic fits, stomachic ailments, scabies, liver complaints,

astringent, carminative, and eye diseases. They are believed to purify blood, and flower juice is administered to treat rheumatism, colds, bronchitis, and bleeding piles.¹³ Lutein is an oxycarotenoid, also known as xanthophyll, that shares the basic C-40 isoprenoid structure with all carotenoids. It also has two cyclic end groups, one beta and one alpha-ionone ring. It is the primary pigment and one of *Tagetes erecta*'s key components.⁷ *Tagetes erecta* flowers are mostly composed of carotenoid compounds, which comprise all trans and cis isomers of zeaxanthines (5%), all trans and cis isomers of lutein, and lutein esters (88%).¹⁴

The *T. erecta* floral part β -sitosterol, β -daucosterol, and 7~63 are bioactive phytochemical elements that are present in the plant's flower part and have been confirmed and released previously. <https://www.pharmacyjournal.org/> is the International Journal of Pharmacy and Pharmaceutical Science. hydroxysitosterol, erythrodiol, lupeol, and erythrodiol-[5-(1-propyn-1-yl)-[2,2-bithiophen]-3-palmitate-5-yl]Syringic acid, gallic acid, kaempferol, quercetagetin, quercetagetin-7-methyl ether, ethanone, α -terthienyl, and quercetagetinDisyringic acid 3- β -galactosyl, 3- α galactosyl, Opledol, 6-ethoxy-2,4-dimethylquinoline (3S,6R,7E)-hydroxy-4,7-megastigmadien-9-one, palmitin, ethylene glycol linoleate, n-hexadecane, hexadecanoic acid, 7-tetra decenal (z), vitamin E, and norolean - 12-ene, carotenoid all trans and cis isomers of zeaxanthines, all trans and cis isomers of lutein, and lutein esters.¹⁵

{Table no.1.} - Major constituents of *Tagetes erecta*

Chemical constituents	Molecular formula	Structure
1. Zeaxanthines	C₄₀H₅₆O₂	

2. Lutein	C ₄₀ H ₅₆ O ₂	
3. Flavonoids	C ₁₅ H ₁₂ O ₂	
4. Thiophenes	C ₄ H ₄ S	
5. Carotenoids	C ₄₀ H ₅₆	

4.5 Methods of extraction and analysis -

4.5.1 Solvent and Fractionation Extraction –

The cold temperature percolation method was used to extract the dry powder of the flower petals individually.¹⁶ Various organic solvents, including hexane, toluene, ethyl acetate, acetone, methanol, and water, were used in the process. A conical flask containing 100 ml of hexane and 10 grams of dried powder was placed on a rotary shaker set at 120 rpm for a full day while cotton wool was placed inside. After 24 hours, the extract was centrifuged for 10 minutes at 5000 rpm after being filtered through eight layers of muslin fabric.

The solvent was evaporated and the supernatant was collected. After that, the residue was put into several conical flasks that were sealed with cotton wool and held on to contain 100 ml of solvents (toluene, ethyl acetate, acetone, methanol, and water) by a 24-hour rotary shaker running at 120 rpm. After 24 hours, the extract was centrifuged for 10 minutes at 5000 rpm after being filtered through eight layers of muslin fabric. After collecting the supernatant and evaporating the solvents, the dry extract was sealed in airtight bottles and kept at 4°C. To determine the extraction yield, the extracts were weighed. Fractionation - The solvent-solvent

partition method was used to separate the acetone extract from the flower.¹⁷

4.5.2 Sequential extraction -

The technique is based on the extraction of the drug's active ingredients utilizing a variety of solvents, from polar to non-polar. Water, methanol, petroleum ether, and chloroform are the solvents that are employed. To prepare the different *Tagetes erecta* flower extracts, the stepwise solvent extraction method was used. The components were extracted one after the other using solvents in ascending polarity order (non-polar to polar). In this procedure, the material that dissolves in a certain range of polarity in a solvent was extracted, and the residue was then extracted using a different solvent. Using a Soxhlet system, the powder (200 g) was extracted consecutively for 8 hours in petroleum ether, chloroform, and methanol. Following the extraction of methanol, the residual dried marc was macerated in distilled water for three days. The residue was then filtered out, and the filtrate was concentrated to create an aqueous extract. A rotary evaporator was used to concentrate each extract, and an oven dryer set at 35–40 °C was used to dry them. Extracts that had dried were kept for later use.¹⁸

4.5.3 Maceration Extraction -

This is a basic and conventional extraction technique involves submerging the plant material in a solvent, like ethanol or methanol, in order to extract the targeted chemicals. This technique is frequently applied to *Tagetes erecta* in order to extract flavonoids, phenolic acids, and other beneficial substances. The powdered plant materials that were crushed and underwent maceration. For four days, the powdered substance was immersed in 90% ethanol. Twice a day, the mixture was stirred. The combination was filtered and the marc was pressed after the fourth day. There were three repetitions of this process. After mixing the whole alcoholic fraction, the ethanol was allowed to evaporate. The material that had a syrupy consistency was boiled in a water bath until a dry extract was produced. *Tagetes erecta* flowers were so extracted and their ethanolic extract was marked and kept in a desiccator until needed later.¹⁹

V. PHARMACOLOGICAL PROPERTIES

5.1 Antioxidant properties -

Three distinct assays were utilized to measure *in vitro* antioxidant activity: DPPH,

reducing power, and super oxide radical scavenging activity at varying doses. Ascorbic acid is the standard in all three assays; *Tagetes erecta* outperforms it in terms of reducing power, although super oxide anion scavenging activity and DPPH antioxidant activity are below standard. Investigations were conducted on the extracts' antioxidant activity as well as the antioxidant chemicals' composition. The extracts containing varying amounts of total phenolic and flavanoids showed significant variation with different solvents ($P<0.05$). The extract containing ethyl alcohol/water (7:3, v/v) had the highest amount of total phenolic and flavanoids, with 62.33 mg GAE/g and 97.00 mg RE/g, respectively (Chivde et al., 2011).²⁰

5.2 Anti-Inflammatory Effects -

It has been found that *Tagetes erecta*, a plant of the Asteraceae family, has significant anti-inflammatory effects.²¹ Its flower heads have potent anti-inflammatory properties in their extracts.²² In addition, *Tagetes erecta* L. leaves were traditionally used in Indian traditional medicine to reduce inflammation and pain. Additionally, it has been discovered that *Tagetes erecta* extract has antinociceptive and anti-inflammatory qualities (23). Toll-like receptor 4 (TLR4)/MD-2 complex is the target of the polyphenol-enriched extract from its petals, which reduces inflammation.²⁴

5.3 Antimicrobial Activity -

It was shown that multiple *Tagetes erecta* flower solvents had antibacterial action against the following bacteria: *Bacillus cereus*, *Escherichia coli*, *Campylobacter coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Proteus vulgaris*, *Streptococcus mutans*, and *Streptococcus pyogenes*. The flavonoid has a maximal zone of inhibition (29.50 mm) for *Klebsiella pneumoniae* and has antibacterial action against all strains tested. The flavonoid Patuletin found in glycosidic form Patuletin as well is one of the potential factors for its antibacterial activity.²⁵

Ruddock et al. investigated that the antibacterial activity of 19 plants used in traditional Colombian medicine for cutaneous illnesses using a disc susceptibility assay. The *T. erecta* flower's various sections showed the greatest inhibitory activity against the NG strain.²⁶ Rhama and Madhavan demonstrated in a different investigation that one of the main causes of *T. erecta*'s antibacterial action is the presence of flavonoids such as patuletin.²⁷ Numerous scientists have looked into the possibility of antimicrobial action

in various *Tagetes erecta* extracts. Padalia and Chanda used hexane, toluene, acetone, methanol, ethyl acetate, and water to extract *T. erecta* flowers. They examined the extracts antibacterial properties against four strains of fungus, eight-gram positive bacteria, and eight-gram negative bacteria. Aqueous extract demonstrated activity against *E. aerogenes*, *P. pseudoalcaligenes*, and *P. morganii*. Nearly all strains of gram-negative bacteria were inhibited by the polar solvent's methanol and acetone. The most effective extract against *K. pneumoniae* was hexane. Acetone and ethyl acetate showed the strongest antibacterial efficacy against *L. monocytogenes* and *B. cereus* when applied to gram-positive bacteria. Hexane extract works similarly against *B. cereus* and *C. rubrum*. Eight grams of positive and eight grams of negative strains were studied, *K. pneumoniae* and *B. cereus* were prevented by all solvent extracts excluding aqueous extract.²⁸

5.4 Skin soothing and wound healing properties

Several cell types, including keratinocytes, fibroblasts, endothelial cells, and inflammatory cells, interact with one another during the skin's regeneration and healing process. Phases include coagulation (haemostasis, fibrin clot formation, and platelet-activated clotting flow); inflammation (neutrophil and monocyte migration, bacterial phagocytosis, and release of proteolytic enzymes to remove the wound); proliferation (artery wall cell angiogenesis and tissue maturation (fibroblast-mediated collagen/ECM transformation).²⁹

VI. APPLICATIONS OF (*T. ERECTA*) IN COSMETICS

7.1 Topical Gel -

A wide range of phytochemicals, including flavonoids, phenolic acids, and carotenoids, are loaded in the flower. Numerous pharmacological effects, including antioxidant, antibacterial, hepatoprotective, analgesic, and wound healing properties, have been linked to these components. The current goal is to create a topical gel containing flower extract from *T. erecta* which is used to treat skin infections.³⁰

7.2. Anti-bacterial/ Anti-acne cream -

In today's medicine, topical therapies are typically used in combination with anti-acne medications to relieve localized irritation, inflammation, and heat (around which the infection develops in the skin tissue). It is used to reduce

skin inflammation and pore blockage, which trap oil in the skin and result in acne (*acne vulgaris*).³¹

7.3. Anti-aging / UVprotection lotion -

Marigold, or *Tagetes erecta*, is a plant that has been shown to have anti-aging and UV protection qualities. Studies has demonstrated that *Tagetes erecta* flower extract has a significant deal of potential as an anti-photoaging agent, preserving skin thickness and reducing photoaging indications.³²

The extract has also been shown to reduce oxidative damage, thereby preventing human skin from photoaging.³³ Additionally, it has been discovered that *Tagetes erecta* lutein ester contains sunscreen properties that prevent the skin from UV ray damage.³⁴ Exploration has also been done on the creation of herbal creams that contain *Tagetes erecta* extracts, and their findings look positive in terms of reducing the aging process and enhancing skin health.³⁵

VII. SAFETY AND TOXICITY

Tagetes erecta, commonly known as marigold, is a widely recognized annual herbaceous plant with a rich history of traditional use in medicine and cosmetics. However, its safety and toxicity have been a topic of concern, with various studies evaluating its potential effects on human health and the environment.

8.1. Impurity and Contamination -

To ensure their safe usage, *Tagetes* products must be guaranteed to be pure and of high quality: Hazardous elements Knowing that marigold plants can absorb harmful elements from the soil, it's important to obtain and test raw materials carefully.³⁶ Chemical contaminants in order to prevent chemical contamination, proper agricultural practices and testing are needed.³⁷ Intoxication reports of contamination with synthetic pigments is to improve color highlight for strict quality control procedures.³⁸

8.2. Regulatory Status -

The administrative status of *Tagetes* arrangements changes by nation and planning use:

A. Nourishment added substances: -

Marigold extracts are generally recognized as secure for utilize as nourishment colorants in numerous countries.

B. Dietary supplements: -

Directed in an unexpected way over jurisdictions, with shifting necessities for beneficial and safety data. While the accessible prove recommends by and large favorable security profile for *Tagetes* species, assist research is required to completely characterize their long-term security and potential interactions. Healthcare providers and shoppers ought to be mindful of these considerations when utilizing or prescribing marigold-based items.⁶

VIII. CONCLUSION

An extensive number of phytochemical components, such as flavonoids, carotenoids, essential oils, and phenolic acids, are present in *Tagetes erecta*, commonly known as marigold, and they all contribute to its many therapeutic benefits. The plant's many medicinal uses, such as its anti-inflammatory, antioxidant, antibacterial, and anticancer properties, are all referred to these bioactive components. The herb has been used traditionally in many cultures to cure conditions like eye infections, gastrointestinal problems, and skin illnesses. Current study provides scientific evidence to support these uses.

REFERENCES

- [1]. A brief review on medicinal plant *Tagetes erecta* Linn Lokesh J Shetty*, Farouk M Sakr, Kais Al-Obaidy, Mohammed J Patel, Hidayatullah Shareef Journal of Applied Pharmaceutical Science Vol. 5 (Suppl 3), pp. 091-095, 2015 Available online at <http://www.japsonline.com> DOI: 10.7324/JAPS.2015. 510.S16 ISSN 2231-3354
- [2]. Singh Y, Gupta A, Kannoja P (2020). *Tagetes erecta* (Marigold) - A review on its phytochemical and medicinal properties. Current Medical and Drug Research, 4 (1), Article ID 201.
- [3]. Dhanashri Chaudhari, Amol Muthal, Ashwin Mali, Malati Salunke and Vaibhav Shinde Phytochemical and pharmacological activities of *Tagetes erecta* L E-ISSN: 2321-2187 P-ISSN: 2394-0514 International Journal of Herbal Medicine 2024; 12(1): 10-15 DOI: <https://doi.org/10.22271/flora.2024.v12.i1.a.915>
- [4]. G. Gopi, A. Elumalai and P. Jayasri A CONCISE REVIEW ON *TAGETES ERECTA* Vol 3 | Issue 1| 2012 | 16-19.
- [5]. Lalit B.C.a*, Poonam Belbaseb, Naren Shahuc , Kamal Pahari Magarceffect of pinching on yield and yield attributing characteristics of marigold (*tagetes erecta* l.): a review Tropical Agrobiodiversity (TRAB) 1(2) (2020) 40-43 DOI: 10.26480/trab.02.2020.40.43
- [6]. Dilip Kumar Mishra* Shashikant Singh Prashant Singh therapeutic benefits and processing of marigold (*tagetes species*): a review Vol 5; Issue 1, Jan-Jun 2024, ISSN 2583-2069
- [7]. Gauri Karwani and Siddhraj S. Sisodia *Tagetes erecta* plant: Review with significant pharmacological activities World Journal of Pharmaceutical Sciences ISSN (Print): 2321-3310; ISSN (Online): 2321-3086 Available online at: <http://www.wjpsonline.org>
- [8]. Sukhendu Kar and Soumen PatraA Review on Marigold (*Tagetes erecta* Linn): the Phytochemicals Present and its Biological activities Article inPrayogikRasayan · January 2022 6(4), 50-58 DOI: 10.53023/p.rasayan-20221220
- [9]. Mauro Marotti, Roberta Piccaglia, Bruno Biavati &Ilaria MarottiCharacterization and Yield Evaluation of Essential Oils from Different *Tagetes* Species volume 16, Issue 5 <https://doi.org/10.1080/10412905.2004.9698767>
- [10]. Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55(3), 207-216. doi: 10.1016/j.phrs.2007.01.012
- [11]. Baskar, R., Rajeswari, V., & Kumar, T. S. (2007). In vitro antioxidant studies in leaves of *Annona* species. Indian Journal of Experimental Biology, 45(5), 480-485.
- [12]. Aarti Khulbe*A review on *Tagetes Erecta* World Journal of Pharmaceutical Sciences World Journal of Pharmaceutical Sciences ISSN (Print): 2321-3310; ISSN (Online): 2321-3086 Available online at: <http://www.wjpsonline.org/>
- [13]. Dixit Priyanka*, Tripathi Shalini*, Verma Kumar Navneet*A BRIEF STUDY ON MARIGOLD (TAGETES SPECIES): A REVIEW Article in International Research Journal of Pharmacy January 2013, 4 (1)

[14]. W. Leigh Hadden, Ruth H. Watkins, Luis W. Levy, Edmundo Regalado, Diana M. Rivadeneira, Richard B. van Breemen, and Steven J. Schwartz* Carotenoid Composition of Marigold (*Tagetes erecta*) Flower Extract Used as Nutritional Supplement *J. Agric. Food Chem.* 1999, 47, 4189–4194

[15]. Pawan Kumar Sagar, AS Khan and S Sonali Pharmacognosy, Physicochemical, Toxicity Quality evolution studies of Marigold - *Tagetes erecta* L. flower of plan *International Journal of Pharmacy and Pharmaceutical Science* 2022; 4(2): 57-66 DOI: <https://doi.org/10.33545/26647222.2022.v4.i2a.90>

[16]. I.Tang J, Meng X, Liu H, Zhao J, Zhou L, et al., (2010) Antimicrobial Activity of Sphingolipids isolated from the stems of Cucumber (*Cucumis Sativus* L). *Molecules* 15: 9288-9297.

[17]. Edziri H, Ammar S, Souad L, Mahjoub MA, Mastouri M, et al., (2012) In Vitro evaluation of antimicrobial and antioxidant activities of some Tunisian vegetables. *South Afr J Bot* 78: 252–256.

[18]. Sayem Arefin, Md Towhidulislam, and md Tanvir hossain Proximate Analysis, Phytochemical screening and antioxidant activity of *tagetes erecta* flower growing in coastal area of bangladesh, Volume 4, (2015)

[19]. Ankur agarwal, Nitesh jain, Rohit Singhal Extraction and Phytochemical screening of *Tagetes erecta* L. Flower extract Volume - 15, Issue - 1, Year - 2022

[20]. Navjeet Singh*, Mrinal and Rubal Thakur a Review on Pharmacological aspects of *Tagetes erecta* Linn Vol 7, Issue 9. Article · August 2019 DOI: 10.29161/PT.v7.i9.2019.16

[21]. R. Devika and Justin KoilpillaiAnti-inflammatory Effect of Bioactive Compounds of *Tagetes erecta* (Linn.) Flower Extract *Journal of pure and applied microbiology*, Sept. 2015. Vol. 9(3), p. 2547-2550

[22]. M. Ganga Raju * , S. Srilakshmi and N. V. L. Suvarchala Reddy anti-inflammatory, in-silico docking and adme analysis of some isolated compounds of *tagetes erecta* flower heads. *ijpsr*(2020), Volume 11, Issue 3

[23]. NV Shinde*, KG Kanase, VC Shilimkar, VR Undale and AV Bhosale Antinociceptive and Anti-Inflammatory Effects of Solvent Extracts of *Tagetes erectus* Linn (Asteraceae)

[24]. Sobarathne Senel Sanjaya a, Mi Hyeon Park b, Hyung Won Ryu b, Yung Hyun Choi c, Mi-Hwa Lee d, Chang-Hee Kang d, Min-Jeong Jung e, Kyoung Tae Lee f, Gi-Young Kim a Polyphenol-enriched extract from *Tagetes erecta* L. attenuates LPS-induced inflammation and toxicity by targeting the TLR4/MD2 signaling pathway

[25]. Various Pharmacological Actions of *Calendula officinalis*, *Tagetes erecta*, *Carica papaya*, *Hypericum perforatum* and *Salvia officinalis*

[26]. Ruddock, P. S., Charland, M., Ramirez, S., López, A., Towers, G. H. N., Arnason, J. T., Liao, M., & Dillon, J. A. R. (2011). Antimicrobial activity of flavonoids from *Piper lanceaefolium* and other Colombian medicinal plants against antibiotic susceptible and resistant strains of *Neisseria gonorrhoeae*. *Sexually Transmitted Diseases*, 38(2), 82–88. <https://doi.org/10.1097/OLQ.0b013e3181f0bdb>

[27]. Rhama S, & Madhavan S. (2011). Antibacterial activity of the Flavonoid, Patulitrin isolated from the flowers of *Tagetes erecta*L. *International Journal of PharmTech Research CODEN (USA): IJPRIF*, 1407–1409.

[28]. Padalia, H., & Chanda, S. (2015). Antimicrobial Efficacy of Different Solvent Extracts of *Tagetes erecta*L. Flower, Alone and in Combination with Antibiotics. *Applied Microbiology: Open Access*, 1(1). <https://doi.org/10.4172/2471-9315.1000106>

[29]. Monika Michalak Plant Extracts as Skin Care and Therapeutic Agents *Int. J. Mol. Sci.* 2023, 24(20) <https://doi.org/10.3390/ijms242015444>

[30]. PapangkornMeetong, PattarapolAnanchaiphatthana, ChawalineeAsawahame, PhuritThanarangsarit, Aranya Jutiviboonsuk*Formulation of topical gel containing *Tagetes erecta* L. floral extract and its antibacterial activity *Pharm Sci*

Asia 2023; 50(2), 157-162
DOI:10.29090/psa.2023.02.22.369

[31]. Putu Lakustini Cahyaningrum1 *, A.A.A. Sauca, Sunia WidyantriAntibacterial activity of marigold flower (TAGETES ERECTA L.) Ethanol extract cream against *staphylococcus aureus*Journal of Vocational Health Studies 06 (2023): 165-172

[32]. Dr. Lia Arista Wijaya a*, Dr. I Gusti Ayu Artini, M.Sc b , Dr. Ni Putu Sriwidayani, Sp. P.A., Subsp. S.M.(K) C, Dr. Putu Ayu Asri Damayanti, M.KES d , Dr. I Wayan Sugiritama, M.KES e , Dr. I Gusti Ayu Widianti, M. Biomed f The Effect of Marigold Flowers (Tagetes Erecta) Extract on Photoaging: A Literature Review International Journal of Research Publication and Reviews, Vol 5, no 5, pp 12653-12657 May 2024

[33]. Chul Ho Kang1, Sung Ja Rhie2 and Young Chul Kim3 Antioxidant and Skin Anti-Aging Effects of Marigold Methanol Extract Vol. 34, No. 1, pp. 31-39 (2018) <https://doi.org/10.5487/TR.2018.34.1.031>

[34]. Deepshikha Kushwaha1*, Prashant Katiyar2, Yashodhara Verma3 Presence of Sun Protection Factor (SPF) in the Tagetes Plants Article in SSR Institute of International Journal of Life Sciences . October 2021 DOI: 10.21276/SSR-IIJLS.2021.7.6.2

[35]. Anurag Sanghavé* 1, Sakshi Shirasath2, Rushikesh Dhangare3, Pratibha Kakade4, Bhagyashri Tandale5, Dr. Gajanan Sanap "Tagetes erecta" a magical remedy for antiaging of skin World Journal of Pharmaceutical Research Volume 13, Issue 13, 867-883

[36]. Zheljazkov VD, Vick BA, Baldwin BS. Herb and oil composition of dill (Anethum graveolens L.) in response to nitrogen and plant density. Industrial Crops and Products, 2006; 23(2): 238-245.

[37]. Palacios SM, Bertoni A, Rossi Y. Efficacy of essential oils from edible plants as insecticides against the house fly, *Musca domestica* L. Molecules, 2009; 14(5): 1938-1947.

[38]. Gallo M, Ferrara L, Naviglio D. Application of ultrasound in food science and technology: A perspective. Food Chemistry, 2018; 321: 223- 231.