Parenteral Controlled Drug Delivery System

Prayash Raj Thakur¹ and Santosh Kumar R²

1M.Pharmacy student, GITAM School of Pharmacy, GITAM (Deemed to be University)
2Assistant Professor, GITAM School of Pharmacy, GITAM (Deemed to be University)
Visakhapatnam, Andhra Pradesh

Submitted: 25-07-2022
Accepted: 05-08-2022

ABSTRACT
When the drugs’ active components have a low bioavailability and when their therapeutic indices are constrained, parenteral administration is the most effective and common form of delivery. Medication transfer technology that reduces the whole number of injections required during the medication therapy time would be extremely beneficial, not simply in terms of obedience. In addition to improving therapy quality; it may also reduce the frequency of the dose. In order to reduce the frequency of drug administration, specific formulation technologies are used that ensure a slow and predictable release of active drug substances. Over the last few years, there has been a lot of buzz about the growth of innovative injectable drug transfer systems. In the field of parenteral drug delivery, diverse technical advancements have made it feasible to create complex systems that enable drug targeting and the extended or controlled release of parenteral medications.

KEYWORDS: Parenteral drug delivery systems, Bioavailability, Pharmacoeconomic, Administration.

I. INTRODUCTION:
Technology improvements in parenteral drug administration have evolved to complex systems that enable medication aiming and continued or controlled release of drugs into the body.[1]

For intravascular formulations, particularly those with straight admission to the blood, onset of drug action is rapid and specific organ or tissue targeting is possible. [2]

The medication active must be delivered according to standard methods, and it must be kept between a minimum blood level below which the drug loses its effectiveness and a total blood level that can signify a risky level. The blood levels can remain between the maximum and lowest for an extended period of time with careful medication delivery.[3]

Dosing Of Medications: Traditional Vs Controlled Release

Parenteral Controlled Drug Delivery System Drugs can be administered intravenously, subcutaneously, intramuscularly, intraperitoneally, and intrathecally via the parenteral route.[3]

• With the introduction of time release parenteral dose forms, the dermal and injectable routes were prioritised.
• producing aqueous and oil-based implants, suspensions, and oiled solutions
• The reservoir of each formulation's qualities will regulate the rate at which drug molecules are continuously released.
• Because of this ongoing release of medication particles, there will be a greater blood level of the medicine for a longer length of time.
• Exactly the sort vehicle will affect the pace of absorption and, as a result, the length of therapeutic activity.
• The targeted delivery systems of injectable dosage forms are utilised to circumvent some of the limitations of the parenteral route of administration.
• The most common and efficient method for administering medications with a limited therapeutic index and active ingredients that have low bioavailability is parenteral administration.[3]

Disadvantages Over Conventional Parenteral Dosage Forms
• The parenteral route has a quick beginning of action and a quick decrease in systemic drug levels.
• It necessitates numerous injections, which causes patient pain.
• Continuous cooperation. When a therapy necessitates ongoing intravenous infusions, it is often best to keep systemic levels within the therapeutically appropriate concentration range.[4]
Controlled release formulations are currently used to alleviate the drawbacks of traditional dose forms.[4]

Types of Parenteral Controlled Drug Delivery System
1. Administration of drugs through injection
2. Medicine delivery mechanism that is implanted

Approaches to Injectable Drug Delivery
For the manufacture of parenteral controlled formulations, several formulation procedures are employed.[5]
The use of viscous, water-miscible carriers, a gelatin aqueous solution. Water-insoluble carriers, such as vegetable oils, combined with a water-repellent ingredient, such as aluminum monostearate.[5]
• Dispersal in lactide-glycolide homopolymers or copolymers, as well as microspheres or microcapsules made of polymeric materials combined use of vasoconstrictor medications.

Parenteral depot system
• Depot preparations are used to make injectable provisions.
• Depot: A long-acting parenteral pharmaceutical formulation aims to provide a smooth, constant, long-lasting, and prolonged effect.[3]

Examples of Injectable controlled release formulations
Long-acting steroid preparations, antipsychotic preparations, antinarcotic preparations, contraceptive preparations, and insulin preparations are just a few examples.

Products for controlled release of parenteral drugs biopharmaceutics
A regulated drug formulation can have a therapeutic impact when it is parenterally injected into a muscle, adipose tissue, or a tissue space. The medicine must first be liberated from the formula and into the general population before it can act on the target location. [3]

Physicochemical properties' impact
rate of medication granules in the formulation dissolving, PH value of the formulation, medication solids' crystalline behaviour and particle size, Drug's solubility and the presence of other components.[6]
The targeted impact may dictate the dosage forms for controlled release. Consider the long term.

Water-based solutions:
A. High viscosity products:
A fast-release drug will have a lower diffusion coefficient when the vehicle has higher viscosity. Cellulose, sodium carboxyl methyl cellulose, and polyvinylpyrrolidone are a few examples of these viscosity agents.[7]

B. Formation of complexes:
To form complexes, drugs such as methyl cellulose and sodiumcarboxymethyl cellulose can be combined with macro molecules such as polyvinyl pyrrolidone and methyl cellulose.

Water-based suspension
When administered intramuscularly or subcutaneously, a suspension often has a lengthierperiod of act than an water solution. A continuous dissolution of the medication is conceivable but not with aqueous solutions. A modified version of the Noyes-Whitney equation can be used to predict the pace at which a medication dissolves in the body.[7]

Micro spheres
The powder can be injected with an 18 or 20 number needle and should be made up of spherical particles that are less than 125 microns in size. It consists of solid, spherical particles suspended in a biodegradable solution containing either the medicine particles in solution or in crystalline form. Such particles have been utilised to deliver anti-cancer medications and opioid antagonists. [7]
The degradation/dissolution of the matrix regulates the release of the drug,which in turn is made of biocompatible and biodegradable polymers such as PLA and PLGA.

Disadvantages of microspheres
The difficulty of removing microspheres from the site is one of the disadvantages of using them for controlled release parenterals.
Drug loading is minimal (max of 50 percent). It's possible that the microspheres will cause drug deterioration.
During microsphere processing, changes in drug crystallinity or polymorphism shape.[7]

Micro capsules
The drug is centrally positioned within a finite-thickness polymeric shell, and release can be regulated via dissolution, diffusion. Quality microcapsules with thick walls often have a zero order rate for medicine release.
Using controlled release microcapsules, steroid, peptide, and anticancer drugs have been effectively delivered parenterally.[8]

Type A processes: such as complicated coacervation and polymer polymer incompatibility, that completely generates capsules in a tube reactor or liquid-filled stirring tank.

Type B procedures: when a coating is placed to the surface of a liquid or solid core material that is disseminated in a gas phase or vacuum in some way, as by spraying it on or coating it, for example; using a spray to aerate Centrifugal extrusion, fluidized bed coating, rotational suspension separation (spin disk), extrusion into a desolvation solution, and more processes are available.

Oil solutions
Using oil solutions, this approach produces parenteral controlled release. The partition of the drug out of the oils and into the inner aqueous fluid regulates drug release. The equilibrium between a substance’s aqueous and oil phases, having a distinctive constant. The actual partition coefficient K is calculated. [8]

Oil suspensions
Combining aqueous suspensions with oil solutions to release drugs from oil suspensions. The floating particles serve as a drug storage area. After drug particle dissolution in the medication availability process, medication partitioning from oil solution to aqueous medium takes place. [8]

Emulsions
Emulsions have been employed as medication carriers as well as for topical drug administration. Parenteral emulsions have made more progress than oral emulsions. For example, in parenteral nourishment, they have been given intravenously. [8]

Liposomes
When phospholipid molecules self-assemble in an aqueous environment, liposomes are produced. The hydrophilic head group of the amphiphilic phospholipid molecules maintains interaction with the water phase while shielding the hydrophobic groups from the aqueous environment by forming a closed bilayer sphere. [1]

Techniques for preparing
There are several procedures that may be employed, including sonication, highly pressurized extrusion, homoginization, lipid-alcohol-water injection, reverse phase evaporation, dehydration, and rehydration. [7]

The first application of liposomes as anticancer drug delivery systems was limited by the finding that they are quickly removed from the circulation and mostly absorbed by the liver macrophage. [9,10] Doxorubicin-loaded stealth liposomes were seen to increase tumorcidal activity in mice by circulating for extended periods of time, aggregating, and extravasating within tumors. [11] Official approval has been given to Caelyx, a liposomal doxorubicin formulation, for the treatment of Kaposi's sarcoma. Patients who have not responded to paclitaxel and cisplatin may soon be able to use this formulation, which is now being studied in ovarian cancer clinical trials. [13,14]

Depending on the creation of the antigenic protein, liposomal vaccines are created by combining DNA, liquid antigens, cytokines, or microorganisms with liposomes. [15] Allergen liposomes are then encapsulated in bentonite lysine microcapsules to limit antigens release and enhance antibody response. [16] Additionally, lipid nanoparticles vaccine adjuvanticity may be dried and kept at cold temperatures for up to a year. [12,17]

Systemic fungal infections are treated with the medication amphotericin B (Ambisome), which is available in liposomal form. The FDA has given its approval to this liposomal formulation for the first time. According to one research, liposomal amphotericin B reduces the drug's overall and renal toxicity at regular dosages by passively target the liver and spleen. [18]

Nanoparticles
A submicron colloidal dispersion of medicine particles, generated using the proper techniques and stabilised with surfactants, is referred to as a nanosuspension. For parenteral and pulmonary delivery as well as oral and topical administration, a pharmaceutical nanosuspension is a medication formulation that contains nano-sized drug particles that have been finely distributed in an aqueous media. In nanosuspension, the element size is always less than 1m (often between two hundred nm and six hundred nm). [18,19]

One of two techniques—“Nanosuspension is typically produced using “Top down technology” or “Bottom up technology”. When a medicine is dissolved in a suitable solvent and then transferred to a quasi, a precipitation process known as “bottom up technology” is used, which leads to the
production of crystals. Precipitation is a technique that makes use of low-cost, basic equipment.[20]

Dealing of Cancer It has been demonstrated that SLN increases the effectiveness and duration of the effects of cytotoxic drugs as well as their negative effects.[21]

Transfection: Cationic SLN has been demonstrated to successfully transfect COS-1 cells in vitro. Deoxyribonucleic acid (DNA) was able to attach to these 100 nm SLN, forming a 300–800 nm stable complex. To evaluate the efficacy of transfection, COS-1 cells were employed.[23]

Treatment of various diseases: Cholesteryl butyrate SLN was used as a prodrug carrier for the anti-inflammatory therapy of ulcerative colitis.

Implants

These are usually put under the skin to maintain drug release by drug diffusion, polymer dissolution, or both. Polymers that are not biodegradable, such as poly dimethyl siloxane. [22]

Polymers that are biodegradable: Natural polymers such as albumin, starch, dextran, gelatin, fibrinogen, and haemoglobin are being studied for regulated drug delivery. Poly (caprolactone), poly lactic acid, poly anhydrides the rate of medication release will be related to its physical size. [20]

New Implant Technologies:

ZOLADEX: Zoladex is a sterile, biodegradable drug with goseralin acetate that is meant to be injected subcutaneously and released continuously for 28 days. Additionally, zoladex-3 months is another name under which zolliadex is sold. The base is composed of a copolymer of glycolic acid and D.L-lactic acid. A number of illnesses, including the palliative treatment of advanced prostate cancer, are approved for its use. Advanced breast cancer can also be treated with it. It must be maintained below 25 degrees Celsius and kept at room temperature. [24]

Implantable Wafer GLIADEL®: In the surgical cavity created when a brain tumour is surgically removed GLIADEL® Wafers release BCNU or carmustine made from biodegradable polymer. The cavity where the high-grade malignant glioma once stood is filled with up to eight wafers after the tumour is removed by the neurosurgeon. A specific quantity of carmustine is included on each wafer, and it progressively dissolves in neighbouring cells to deliver carmustine to those cells.[24,25]

Durin® Biodegradable Implants: Biodegradable polymers are used as excipients in the formulations of implanted medications using the DURIN biodegradable implant technology. This material family, comprises polymers and copolymers made from co - glycolic acid, DL-lactide, L-lactide, and -caprolactone, which are often used in medical equipment and drug delivery applications.[26,27]

Infusion Devices: Similar implanted devices, but more adaptable due to the ability to refill the drug reservoir as needed and the inherent motivation of the implants to provide the medication at a zero-order rate. [28] Based on how they are propelled to release the contents, the following types of implanted pumps are categorised:

1. Drug delivery systems that are triggered by osmotic pressure
2. Systems for medication delivery that are actuated by vapour pressure
3. Battery-operated medication delivery systems

A. Drug delivery systems that are triggered by osmotic pressure

ALZET osmotic pumps: ALZET pumps enable for zero-order medicine administration. They are capsule-shaped and available in a variety of sizes. Three layers make up the pump.[29]

1. An impermeable, foldable polyester bag housing the innermost medication reservoir.
2. A sleeve containing intermediate source of osmotic energy.
3. The stiffest, rate-controlling substituted cellulosic polymer SPM is developed.

B. DUROS infusion implant: Designed to deliver small molecule medications, peptide, enzymes, DNA, as well as other bioactive molecules systemically or tissue-specifically, the DUROS osmosis implant is a non-biodegradable, tiny titanium cylinder.[30,31]
The vapour pressure pump: commonly referred to as the Infusaid, operates on the tenet that a fluid in balance with its vapour exerts a constant pressure at a particular temperature that is irrespective of the area in which it is housed.

Part II. Battery-operated Pumps: Insulin has been successfully supplied by two different kinds of battery-powered implanted programmable pumps; Electronically controlled peristaltic pumps and reciprocating pumps powered by solenoids. The system might be set up to disperse drugs at the right pace. Their design directs the drug toward the exit while preventing infusate backflow.[32,33]

II. CONCLUSION:

The above-mentioned drug delivery systems are used to regulate medication distribution via parenteral injection. In recent years, parenteral drug delivery systems have evolved into key technological platforms employed by pharmaceutical businesses. As a result, it is critical to research the parenteral medication delivery system, as it allows quick treatment with the goal of saving a precious human life. Maintaining a desired pharmacological response at a single place while preventing undesirable interactions at other sites is aim of antivenous controlled medication delivery. Chemotherapy for cancer, enzyme replacement therapy, and other related therapies, in particular, bear this out. It is done in two different methods. The first technique is chemically altering a parent molecule to produce a derivative that is only active where it is wanted. The second method delivers the drug to the desired location using carriers such lipid membranes, spheres, nanoparticles, and macromolecules. Novel drug delivery methods must be developed as a result to increase the efficacy of treatments.

REFERENCES

[5]. MahekGoel. parenteral controlled drug delivery system, pharmatutor-art-1477.

[32]. Shin Hyun, BaeSoo, Lee Myung. Pharmacokinetics of sidenafil after intravenous and oral administration in rats: