

Transdermal Drug Delivery Systems: Formulation Strategies, Permeation Enhancement Techniques, And Future Perspectives

Ms. Prachi Jitendra Rathod^{*1}, Mr. Dipak More²

¹ Assistant Professor, Shri Gulabrao Deokar College of Pharmacy, Jalgaon, Maharashtra, India

² Student, Shri Gulabrao Deokar College of Pharmacy, Jalgaon, Maharashtra, India

*Corresponding Author: Ms. Prachi Jitendra Rathod.

Date of Submission: 14-12-2025

Date of acceptance: 28-12-2025

ABSTRACT: Transdermal drug delivery systems (TDDS) provide a non-invasive and effective alternative to oral and injectable drug administration by delivering drugs across the skin at a controlled rate. They improve patient compliance, maintain steady plasma drug levels, and avoid hepatic first-pass metabolism. However, the stratum corneum acts as a major barrier, limiting drug permeation to potent, low-molecular-weight compounds. Recent advances such as chemical and physical permeation enhancers, microneedles, and nanotechnology-based carriers have significantly improved skin penetration and expanded the range of deliverable drugs. These developments highlight the growing potential of TDDS in modern pharmaceutical therapy.

KEYWORDS: Transdermal drug delivery systems; Skin permeation; Stratum corneum; Permeation enhancers; Microneedles; Nanotechnology; Controlled drug release; Transdermal patches

I. INTRODUCTION

Advancements in drug delivery technologies have increased interest in transdermal drug delivery as a non-invasive route for systemic drug administration [1,2]. Transdermal drug delivery systems (TDDS) are controlled devices designed to deliver drugs across intact skin at a predetermined rate, offering advantages such as improved patient compliance, sustained drug release, and avoidance of hepatic first-pass metabolism [2]. By maintaining steady plasma drug concentrations, TDDS reduce fluctuations associated with oral dosing and mimic the benefits of intravenous infusion without invasive risks [3].

Despite these advantages, the stratum corneum acts as a major barrier, limiting transdermal delivery to drugs with low molecular weight and suitable lipophilicity. To address these limitations, active enhancement techniques such as iontophoresis, electroporation, microneedles, and ultrasound have been developed to improve skin permeability and enable delivery of a wider range of

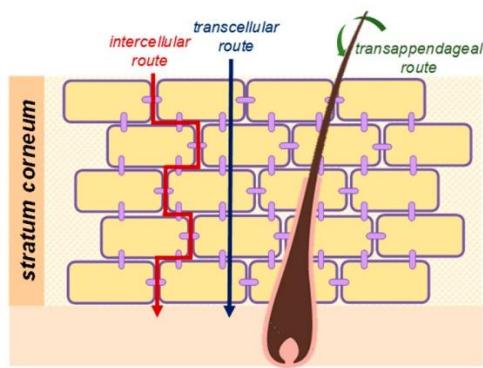
drugs, including macromolecules [4]. Since the introduction of the first FDA-approved transdermal patch in 1979, TDDS have evolved into widely used therapeutic systems with significant clinical and commercial impact, and ongoing research continues to focus on next-generation transdermal technologies [5].

RATIONAL FOR TRANSDERMAL DRUG DELIVERY

Despite the strong barrier properties of the skin, transdermal drug delivery is justified in situations where oral administration is unsuitable due to poor bioavailability or extensive first-pass metabolism. Although intravenous delivery overcomes these limitations, its invasive nature limits patient acceptance, particularly for long-term therapy. Transdermal delivery offers a non-invasive alternative with improved patient compliance, providing sustained and controlled drug release over extended periods. However, its application is limited by the stratum corneum, which restricts drug permeation to low daily doses. Therefore, suitable transdermal drug candidates must be highly potent and possess favourable physicochemical properties to effectively cross the skin barrier. [6]

ADVANTAGES OF TRANSDERMAL DRUG DELIVERY SYSTEMS [7,8]

- Avoids hepatic first-pass metabolism
- Improves patient compliance due to non-invasive and painless administration
- Provides sustained and controlled drug release
- Maintains steady plasma drug concentrations
- Reduces dosing frequency and systemic side effects
- Therapy can be terminated easily by patch removal


DISADVANTAGES OF TRANSDERMAL DRUG DELIVERY SYSTEMS [9,10]

- Possibility of skin irritation or allergic reactions

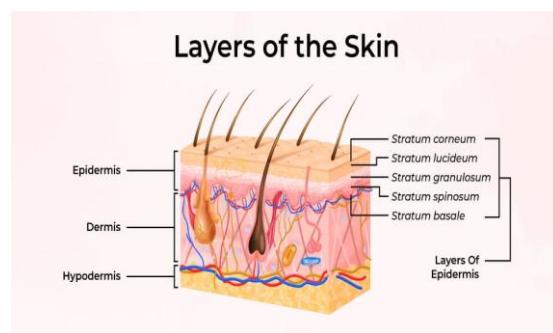
- Limited to drugs with suitable physicochemical properties
- Slow onset of action compared to injectable routes
- Adhesion problems during sweating or movement
- Inter-individual variability in skin permeability

LIMITATIONS OF TRANSDERMAL DRUG DELIVERY SYSTEMS [11]

- Restricted to potent drugs requiring low daily doses (≈ 10 mg/day)
- Ineffective for drugs with high molecular weight or poor skin permeability
- Strong barrier function of the stratum corneum limits drug transport
- Not suitable for rapid or emergency drug delivery
- Environmental factors (temperature, humidity) may affect drug release

Routes of Drug Penetration

Drugs can penetrate the skin via three main pathways:


1. **Transcellular Route:** Drug molecules pass directly through the corneocytes of the stratum corneum. This pathway involves repeated partitioning between lipid and aqueous domains and is typically utilized by small, moderately lipophilic molecules.
2. **Intercellular Route:** Drugs diffuse through the lipid matrix between corneocytes. This is the most common pathway for transdermal drug delivery, particularly for lipophilic compounds.
3. **Appendageal Route:** Drug transport occurs via skin appendages such as hair follicles, sweat glands,

SKIN ANATOMY AND ROUTES OF DRUG PENETRATION

The skin is the largest organ of the human body and serves as a protective barrier against physical, chemical, and microbial insults. It is composed of three primary layers: the epidermis, dermis, and hypodermis. Among these, the epidermis—particularly its outermost layer, the stratum corneum—plays a critical role in regulating transdermal drug permeation.

Skin Anatomy

The epidermis is the outermost layer of the skin and consists of multiple sublayers, with the stratum corneum forming the primary barrier to drug penetration. The stratum corneum is composed of dead, keratinized cells (corneocytes) embedded in a lipid matrix, often described as a “brick-and-mortar” structure. Beneath the epidermis lies the dermis, a vascularized layer containing connective tissue, blood vessels, and nerve endings, which facilitates systemic drug absorption once the drug crosses the epidermal barrier. The hypodermis, composed mainly of adipose tissue, provides insulation and mechanical support but plays a minimal role in drug permeation. [6]

and sebaceous glands. Although this pathway represents a small fraction of the total skin surface area, it can be significant for ions, macromolecules, and particulate delivery systems. [7]

II. FACTORS AFFECTING TRANSDERMAL DRUG DELIVERY

Skin Condition

Intact skin acts as a natural protective barrier; however, several agents such as acids and alkalis are capable of penetrating through skin cells. Certain solvents, including methanol and chloroform, disrupt the dense structure of the stratum corneum by removing lipid components. This disruption creates

artificial pathways that allow drug molecules to pass through the skin more easily.[12]

Skin Age

The skin of children and young adults is generally more permeable than that of older individuals, although the difference is not very pronounced. Children are more susceptible to toxic effects because they have a larger surface area relative to body weight. As a result, substances such as potent corticosteroids, boric acid, and hexachlorophene have been reported to cause severe adverse effects in children. [13]

Physicochemical Factors

i) Hydration of the Skin

When the skin becomes well hydrated, it swells, softens wrinkles, and increases its permeability. This enhanced hydration facilitates the penetration of drug molecules through the skin.

ii) Temperature and pH of the Skin

Skin penetration is influenced by temperature changes. As temperature decreases, the diffusion coefficient also decreases. However, adequate clothing helps minimize temperature fluctuations and maintains relatively constant penetration rates.

Regarding pH, only unionized drug molecules readily cross lipid membranes. Weak acids and bases dissociate to varying degrees depending on their pH and pKa or pKb values. Therefore, the concentration of the unionized drug in the applied formulation determines the effective concentration gradient across the membrane, which is directly influenced by pH.[12]

Environmental Factors

i) Sunlight

Exposure to sunlight can thin the walls of blood vessels, making the skin more prone to bruising even with minor trauma, especially in sun-exposed areas. Sunlight also causes pigmentation changes, such as freckles or solar lentigines, which are common sun-induced skin alterations.

ii) Cold Season

Cold weather often leads to dry and itchy skin. In response, the skin increases oil production to counteract dryness. Using a good moisturizer helps relieve dry-skin symptoms, while adequate water intake maintains skin hydration and improves overall skin appearance.

iii) Air Pollution

Dust and pollutants can clog skin pores and promote bacterial growth on the skin surface, leading to acne

and spots that may interfere with drug delivery through the skin. Additionally, invisible chemical pollutants damage the skin's natural protective barrier by breaking down essential oils that retain moisture and maintain skin suppleness.[14]

III. COMPONENTS OF TRANSDERMAL DRUG DELIVERY SYSTEM (TDDS)

Polymer matrix / Drug reservoir:

Polymers form the backbone of TDDS and control drug release. They should be biocompatible, chemically stable, non-toxic, compatible with the drug and excipients, and provide uniform drug delivery.[10,15]

Membrane:

Acts as a rate-controlling barrier to regulate drug diffusion. Common materials include ethylene vinyl acetate, silicone rubber, and polyurethane.[15]

Drug:

Drugs suitable for TDDS usually have short half-life, narrow therapeutic index, or extensive first-pass metabolism (e.g., clonidine, atenolol, propranolol).[10]

Permeation enhancers:

Increase skin permeability by altering stratum corneum structure through chemical or physical methods, improving drug absorption.[15]

Pressure-Sensitive Adhesive (PSA):

Ensures adhesion of the patch to skin with light pressure. It should be compatible with drug and excipients. Examples include acrylic, silicone, and polyisobutylene adhesives.

Backing laminates:

Provide support, protection, and occlusion. They should be flexible, chemically resistant, and impermeable to drug loss (e.g., polyethylene, polyester, aluminum films).

Release liner:

Protects the patch during storage and is removed before use. It should be inert and non-reactive (e.g., silicon-coated paper, polyethylene).

Other excipients:

Plasticizers (PEG, propylene glycol) provide flexibility, and solvents (methanol, chloroform, acetone) are used in patch formulation.[1]

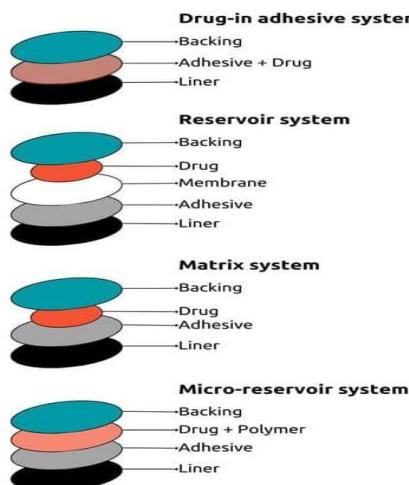
IV. TYPES OF TRANSDERMAL DRUG DELIVERY SYSTEMS (TDDS)

Reservoir System

The drug reservoir is placed between an impermeable backing layer and a rate-controlling membrane (microporous or non-porous). Drug release occurs only through the membrane. The drug may be present as a solution, suspension, gel, or solid matrix.

Adhesive is applied either as a continuous layer or around the membrane. [18]

Matrix System (Drug-in-Adhesive)


The drug is dispersed directly into an adhesive polymer, which controls both adhesion and drug release. The medicated adhesive is coated onto an impermeable backing layer. [16]

Matrix-Dispersion System

The drug is uniformly dispersed in a hydrophilic or lipophilic polymer matrix. The matrix is fixed to an occlusive backing layer, while the adhesive is applied around the edges as an adhesive rim.

Microreservoir System

This system combines reservoir and matrix systems. The drug is first dissolved or suspended in an aqueous polymer solution and then dispersed in a lipophilic polymer, forming microscopic drug reservoirs stabilized by cross-linking. [19,20]

TYPES OF TRANSDERMAL PATCHES

Single-Layer Drug-in-Adhesive Patch

The drug is incorporated into a single adhesive layer that provides adhesion and drug release. It is covered by a backing layer and a temporary release liner.

Multi-Layer Drug-in-Adhesive Patch

Contains multiple adhesive layers, including an immediate-release layer and a controlled-release layer, along with a backing and release liner.

Vapour Patch

The adhesive layer releases vapors such as essential oils. These patches are used for decongestion, improving sleep, and reducing smoking habits.

Reservoir Patch

The drug reservoir is enclosed between a backing layer and a rate-controlling membrane, allowing controlled drug release through the membrane.[6]

METHODS OF PREPARATION OF TRANSDERMAL PATCHES

Asymmetric TPX Membrane Method

A heat-sealable polyester film is used as backing. The drug is placed in a concave backing, covered with an asymmetric TPX membrane, and sealed with adhesive.

The TPX membrane is prepared by dry/wet phase inversion using cyclohexane solvent, followed by casting, evaporation, coagulation, and drying.

Circular Teflon Mould Method

Drug, polymer, permeation enhancer, and plasticizer are dissolved in an organic solvent. The solution is poured into a circular Teflon mould and solvent is evaporated under controlled conditions. The dried films are stored in a desiccator before evaluation.

Mercury Substrate Method

Drug and polymer solution containing plasticizer is poured onto a leveled mercury surface. Solvent evaporation is controlled using an inverted funnel to form a uniform film.

IPM Membrane Method

Drug is dispersed in water-propylene glycol containing Carbomer 940 and stirred. The dispersion is neutralized with triethanolamine to form a gel, which is incorporated into an IPM membrane.

EVAC Membrane Method

Drug is incorporated into a carbopol gel and placed on a backing layer. An EVAC membrane acts as a rate-controlling membrane. The edges are heat-sealed to form a leak-proof patch.

Aluminium-Backed Adhesive Film Method

Used for drugs with high loading doses (>10 mg). Drug and adhesive are dissolved in chloroform and spread onto aluminium foil lined moulds to form stable transdermal films.[6]

EVALUATION PARAMETERS OF TRANSDERMAL DRUG DELIVERY SYSTEMS (TDDS)

Interaction Studies: Performed to check drug-excipient compatibility to ensure stability and bioavailability. Studied using FT-IR, DSC/thermal analysis, UV, and chromatographic techniques.

Thickness of Patch: Measured at different points using a digital micrometer to ensure uniform thickness.

Weight Uniformity: Patches are dried, cut into equal sizes, weighed, and average weight with standard deviation is calculated.

Folding Endurance: Number of times a patch can be folded at the same point without breaking indicates flexibility.

Drug Content: Patch is dissolved in suitable solvent and analyzed using UV or HPLC.

Uniformity of Dosage Unit: Patch pieces are extracted, filtered, and analyzed to determine drug content per unit.

Polariscope Examination: Used to determine whether the drug is in crystalline or amorphous form.

Shear Adhesion Test: Measures cohesive strength of adhesive by recording time required to detach under load.

Peel Adhesion Test: Measures force required to peel patch from substrate at 180° angle.

Thumb Tack Test: Qualitative test to evaluate tackiness by thumb pressure.

Flatness Test: Determines patch flatness by measuring percent constriction [1]

STRATEGIES TO OVERCOME SKIN BARRIER IN TRANSDERMAL DRUG DELIVERY

Due to the highly selective nature of the stratum corneum, only a limited number of drugs can be delivered transdermal. Various **chemical, physical, and prodrug approaches** are used to enhance skin permeability.

Chemical Methods

Chemical permeation enhancers increase drug transport by:

- Increasing drug partitioning into the stratum corneum
- Increasing lipid fluidity
- Extracting intercellular lipids
- Increasing skin hydration

Examples of chemical enhancers:

- Alcohols (ethanol, propylene glycol)
- Fatty acids (oleic acid, linoleic acid)
- Esters (isopropyl myristate)

- Amides (Azone®, urea)
- Surfactants (Tween®, sodium lauryl sulfate)
- Terpenes (menthol, limonene)

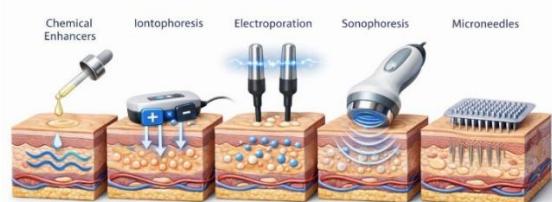
Limitation: Skin irritation at higher concentrations.

Physical Methods

These methods physically disrupt the skin barrier to enhance drug permeation:

- **Microneedles:** Create microchannels without pain
- **Iontophoresis:** Uses low electric current to deliver charged drugs
- **Electroporation:** High-voltage pulses create temporary pores
- **Ultrasound (Sonophoresis):** Cavitation disrupts lipid structure
- **Thermal ablation / Laser:** Creates micropores in stratum corneum
- **Jet injection:** High-pressure drug delivery without needles

Dermabrasion: Removes superficial skin layers
 Advantage: Effective for macromolecules like insulin and vaccines.


Prodrug Approach

Drug molecules are chemically modified to improve lipophilicity and skin permeability. After permeation, the prodrug is converted into the active drug.

Combination Approaches

Combining methods (e.g., microneedles + iontophoresis, electroporation + ultrasound) shows synergistic enhancement of drug permeation [4]

Strategies to Overcome Skin Barrier for Transdermal Drug Delivery

NANOTECHNOLOGY-BASED

TRANSDERMAL DRUG DELIVERY

Nanotechnology has improved transdermal and topical drug delivery by enhancing **drug solubility, stability, skin penetration, and bioavailability**, especially for hydrophobic and macromolecular drugs.

Microneedles

Microneedles are micron-sized needles that pierce the stratum corneum and deliver drugs directly to the viable epidermis.

Advantages: Painless, bypasses first-pass metabolism, high bioavailability, suitable for vaccines.

Limitations: Limited drug loading, possible irritation.

Vesicular Nanocarriers

These include liposomes, ectosomes, noisomes, transferosomes, and anastomosomes.

They encapsulate drugs in vesicles and enhance skin permeation.

Ectosomes (ethanol-containing vesicles) show improved penetration of poorly soluble drugs.

Polymeric Nanocarriers

Polymeric micelles are self-assembled nanocarriers with a hydrophobic core and hydrophilic shell.

Advantages: Improve solubility of poorly soluble drugs, targeted delivery, reduced systemic side effects, good stability.

Lipid-Based Nanocarriers

Includes solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and liposomes. They provide controlled release, high stability, and improved bioavailability.

NLCs overcome poor drug loading seen with SLNs.

Metallic Nanocarriers

Metallic nanoparticles (gold, silver, zinc oxide) offer high drug loading and site-specific targeting.

Advantages: Improved solubility, controlled release, cancer targeting.

Limitation: Possible toxicity and poor biocompatibility.


Nano emulsions

Nano-sized oil-in-water dispersions that improve penetration and absorption.

Advantages: High stability, enhanced bioavailability, protection of drugs from degradation.

Nanofibers / Microfibers

Produced mainly by electrospinning, offering high surface area and controlled drug release. Widely used in wound healing and localized therapy.[3]

TRANSDERMAL PRODUCTS ON THE US MARKET

The first FDA-approved transdermal patch was scopolamine (1979) for motion sickness. It was a reservoir-type patch. This was followed by nitroglycerin (1981) for angina and clonidine (1984) as the first 7-day patch for hypertension. Later developments included estradiol (1986) and fentanyl (1990) patches.

The nicotine patch (1991) revolutionized transdermal therapy for smoking cessation. Other marketed patches include testosterone, estradiol-norethindrone, and estradiol-levonorgestrel combinations for hormonal therapy.

Transdermal delivery expanded to neurological disorders, including:

- Methylphenidate (ADHD, 2006)
- Rotigotine (Parkinson's disease, 2007)
- Rivastigmine (dementia, 2007)

In addition to patches, transdermal gels and sprays such as AndroGel® (testosterone) and Evamist® (estradiol) are available. These offer better cosmetic appeal and cost efficiency.

A major concern with patches is residual drug content, posing safety and abuse risks (e.g., Lidoderm® delivers only ~3% of drug). Proper disposal and improved delivery technologies are needed.

TRANSDERMAL PRODUCTS FOR LOCAL DERMAL DELIVERY

Topical transdermal products are used mainly for pain management, arthritis, neuropathy, muscle strain, and local anaesthesia.

Examples include diclofenac, capsaicin, and lidocaine/tetracaine (Synera®), which uses CHADD® heat-assisted technology to enhance permeation.

TRANSDERMAL PRODUCTS IN CLINICAL TRIALS

Numerous FDA-approved clinical trials (Phase I–IV) are ongoing for both approved and investigational transdermal systems. These include drugs such as fentanyl, nicotine, insulin, lidocaine, diclofenac, and hormones.

Advanced microoperation technologies under development include:

- Microneedles
- Laser
- Radiofrequency
- Thermal ablation
- Iontophoresis

Products nearing approval or in late-stage trials include:

- Buprenorphine TDS (pain)
- Sumatriptan iontophoretic patch (Zelrix™) for migraine
- Insulin thermal ablation systems
- ViaDerm™ parathyroid hormone patch [2]

FUTURE PERSPECTIVE OF TRANSDERMAL DRUG DELIVERY

The future of transdermal drug delivery lies in the expanded use of novel permeation enhancement techniques, especially for macromolecules and conventional drugs across a wider range of diseases. Physical enhancement methods (microneedles, iontophoresis, ultrasound, thermal ablation) provide significant improvement in drug delivery rates and are expected to lead to new device-based transdermal systems.

The development of transdermal prodrugs is anticipated, which may help achieve therapeutic drug levels while reducing skin irritation. Advances in novel formulations such as liposomes, microemulsions, nanoparticles, and evaporating gels are expected to further improve efficacy and safety. Additionally, new chemical permeation enhancers with reduced irritation potential show promise and warrant further investigation, paving the way for safer and more effective transdermal therapies. [6]

V. CONCLUSION

Transdermal drug delivery systems (TDDS) offer an effective alternative to oral and injectable routes by providing controlled drug release, improved patient compliance, and reduced side effects. The major limitation of TDDS is the skin barrier, which has driven the development of advanced permeation enhancement strategies. Recent progress in nanotechnology, physical enhancement methods (microneedles, iontophoresis,

sonophoresis), and novel carriers such as Nano emulsions, SLNs, NLCs, and vesicular systems has significantly improved drug permeation across the skin. With continuous technological advancements and comprehensive evaluation approaches, TDDS show strong potential for delivering a wider range of drugs and hold a promising future in pharmaceutical therapy.

REFERENCES

- [1]. Rastogi, V., & Yadav, P. (2012). Transdermal drug delivery system: An overview. *Asian Journal of Pharmaceutics (AJP)*, 6(3).
- [2]. Paudel, K. S., Milewski, M., Swadley, C. L., Brogden, N. K., Ghosh, P., & Stinchcomb, A. L. (2010). Challenges and opportunities in dermal/transdermal delivery. *Therapeutic delivery*, 1(1), 109-131.
- [3]. Tapfumaneyi, P., Imran, M., Mohammed, Y., & Roberts, M. S. (2022). Recent advances and future prospective of topical and transdermal delivery systems. *Frontiers in Drug Delivery*, 2, 957732.
- [4]. Brown, M. B., Martin, G. P., Jones, S. A., & Akomeah, F. K. (2006). Dermal and transdermal drug delivery systems: current and future prospects. *Drug delivery*, 13(3), 175-187.
- [5]. Bakhrushina, E. O., Shumkova, M. M., Avdonina, Y. V., Ananian, A. A., Babazadeh, M., Pouya, G., ... & Krasnyuk, I. I. (2025). Transdermal drug delivery systems: methods for enhancing skin permeability and their evaluation. *Pharmaceutics*, 17(7), 936.
- [6]. Naik A, Kalia YN, Guy RH. Transdermal drug delivery: Overcoming the skin's barrier function. *Pharm Sci Technol Today* 2009;3:318-26.
- [7]. Patel RP, Baria AH. Formulation and evaluation consideration of transdermal drug delivery system. *Int J Pharm Res* 2011;3:1-9.
- [8]. Merkle HP. Transdermal delivery systems. *Methods Find Exp Clin Pharmacol* 1989;11:135-53.
- [9]. Brown L and Langer R. Transdermal delivery of drugs. *Annu Rev Med* 1988;39:221-9.
- [10]. Arunachalam A, Karthikeyan M, Kumar DV, Prathap M, Sethuram S, Kumar AS. Transdermal drug delivery system: A review. *Curr Pharma Res* 2010;1:70-81.
- [11]. Patel, D., Patel, N., Parmar, M., & Kaur, N. (2011). Transdermal drug delivery system: An Overview. *International Journal of*

Toxicological and Pharmacological Research, 1, 61-80.

- [12]. Singh MC, Naik AS, Sawant SD. Transdermal drug delivery systems with major emphasis on Transdermal Patches: A review. *J Pharm Res* 2010;3:2537-43.
- [13]. Aulton ME. *Aulton's Pharmaceutics The design and manufacture of medicine.* 3rd ed. Churchill Livingstone: Elsevier; 2007. p. 567-8.
- [14]. Jain NK. *Controlled and Novel Drug Delivery.* New Delhi: CBS Publishers and Distributors; 2002. p. 107.
- [15]. Kumar TS, Selvam RP, Singh AK. Transdermal drug delivery systems for antihypertensive drugs. *Int J Pharm Biomed Res* 2010;1:1-8.
- [16]. Chien YW. Novel drug delivery systems, *Drugs and the Pharmaceutical Sciences*, Vol. 50. New York: Marcel Dekker; 1992. p. 797.
- [17]. Sugibayashi K, Morimoto Y. Polymers for transdermal drug delivery systems. *J Control Release* 1994;29:177-85.
- [18]. Kumar JA, Pullakandam N, Prabu SL, Gopal V. Transdermal drug delivery system: An overview. *Int J Pharm Sci Rev Res* 2010;3:49-54.
- [19]. Sakalle P, Dwivedi S, Dwivedi A. Design, evaluation, parameters and marketed products of transdermal patches: A review. *J Pharm Res* 2010;3:235-40.
- [20]. Brahmankar DM, Jaiswal SB. *Biopharmaceutics and pharmacokinetics A treatise.* Delhi: Vallabh Prakashan; 1995. p. 335-71.